UNCLASSIFIED

Defense Spectrum Organization

Innovations in Electromagnetic Spectrum Sharing

The information provided in this briefing is for general information purposes only. It does not constitute a commitment on behalf of the United States Government to provide any of the capabilities, systems or equipment presented and in no way obligates the United States Government to enter into any future agreements with regard to the same. The information presented may not be disseminated without the express consent of the United States Government.

3

- Introduction
- Transformations in Spectrum Sharing Greg Wagner 5 min
- EMS Algorithm Innovations 10 min Stuart Schutta
- EMS Big Data Analytics 10 min Betsy Park
- EMS Visualization 10 min Rocky Rocksvold
- EMS Sharing System Innovations 10 min Howard McDonald
- Q&A 10 min

UNCLASSIFIED

Spectrum Sharing Transformations

Gregory C. Wagner Defense Spectrum Organization 16 May 2018

DOD Spectrum Sharing

"Spectrum Sharing"

Goal 1, Objective 2: "Accelerate the fielding of technologies that enable spectrum sharing and improve access opportunities"

"Technology innovation will overcome some of today's challenges associated with spectrum sharing, such as the risk of harmful interference."

Goal 2, Objective 1: "Develop the ability to perform near-real time spectrum operations"

"...DoD will improve its capabilities to plan, manage, and control all dimensions of spectrum use to preserve access to and maneuver within the EME."

"Cooperative Spectrum Use"

Spectrum Sharing Increases DOD's Lethality & Improves Information Dominance

	Yesterday	Тодау	Tomorrow
Sharing Mechanisms	Human-based	Bolt On: Ecosystems	Baked In: Devices
Time Scales	Calendar	Clock	Machine
Technical Approach	Procedural Static	Procedurally defined Semi-automated Incumbent-centric	Policy constrained Autonomous Co-equal access
Interference	Ex Ante: Avoidance	Ex Poste: Detect/Clear	Ex Poste: Detect/React
Interference Risk Mgmt	Avoid	Reduce/Mitigate	Accept/Tolerate/Mitigate
Analyses	Basic techniques, basic data	High-fidelity techniques & data	Behavior-based techniques with high quality data
Nature	Simple	Complicated	Complex
EMS Management			EMS Operations

Algorithm Innovations

Analyzing Aggregate Interference

Stuart Schutta Defense Spectrum Organization 16 May 2018

A Statistical Analysis Approach

Risk-based Interference Analysis

UNCLASSIFIED

Big Data and Analytics in the Spectrum Domain

Elizabeth Park

JSDR Product Lead

Defense Spectrum Organization – GEMSIS SE Branch

May 2018

MEO Coverage Time (hr)

- Regulatory Data
- Frequency Assignments/Channel Allotments
- Equipment Characteristics
- Emitter Position Information
- Interference Reports
- Spectrum Dependent Modeling and Simulation
- Environmental Data
- Spectrum Monitoring Data
- C2, Electronic Warfare

MANAGEMEN

4 V's of Big Data

- What is "Big Data"?
 - 4 V's: Volume, Velocity, Variety, Veracity
- Volume How "Big" is your raw dataset?
 - Most data scientists still deal with datasets in the gigabyte range (2016 KDD Poll)
 - Current spectrum data sets with exception of monitoring data are in the GB
- Variety How does your data vary?
 - Most data is still in tables or text (KDD 2017 Poll)
 - Spectrum data wide variety structured, unstructured
- Veracity How uncertain is your data?
 - Current spectrum data has ambiguity in structure and value
 - Spectrum domain's greatest challenge
- Velocity How often does your data change?
 - Expect dramatic increase in spectrum data velocity
 - Raw signal or measured data from sensors or logging provide unique challenges

DSO Initiatives: Joint Spectrum Data Repository

DSO's Joint Spectrum Data Repository (JSDR) contains DoD, national, and international spectrum-related information up to the Secret level which can be accessed via various interfaces:

- Structured Queries (Multiple Legacy Data Sources)
- Content Management System
- Business Intelligence and Analytics
- Universal Query
- Business Process Rules Engine
- Geographical Information System
- Engineering Services
- REST API for M2M data import and distribution

JSDR is currently deployed in MilCloud 1.0 and will migrate to MilCloud 2.0

The JSDR architecture handles Volume, Variety and Veracity with an eye toward Velocity (integration of streaming data) in the future.

Future Architecture Considerations

CURRENT ARCHITECTURE

- JSDR currently provides Speed and Serving layers via:
 - ElasticSearch
 - MongoDB
 - Apache Fuse
- Metadata handling can be added on the data processing/ingest layer.
 We currently utilize Pentaho Data Integration to provide data processing and ingest into the JSDR.

FUTURE CONSIDERATIONS

- Look toward implementing a HDFS data store to support the Batch layer
- Each layer is scalable and fault tolerant
- Incorporates industry best practices
- All open source components
- Candidate technologies depicted

Strategic Planning Use Cases:

Leveraging Data Analytics

- Quantifying DoD EMS equities
- Impact of spectrum regulatory changes on DoD operations (CONUS and OCONUS)
- Historical evaluation of DoD spectrum usage
- Trends/metrics for spectrum efficiency (b/s/hz)
- Prediction of interference events
- Identify data quality issues
- Predict of future constraints
- Identify acquisition risk

Decision Support Use Case

UNCLASSIFIED

Spectrum Data Visualization

Edward "Rocky" Rocksvold International Team Lead, DSO SPD 16 May 2018

UNCLASSIFIED

UNITED IN SERVICE TO OUR NATION

Visualization is Everything

Planning for a little hike in the mountains

I have all the data I need, but...

Source: http://www.mappery.com/map-of/Mt-Everest-Map

The way I visualize the data makes all the difference!!

Making Sense of the Data

Visualization brings all this data together

	3 600-4 800 MHz			
	Allocation to services			
Region 1	Region 2	Region 3		
3 600-4 200 FIXED FIXED SATELLITE (space-to-Earth) Mobile	3 600.3 700 FIXED -SATELLITE (space-to- Earth) MOBILE except aeronautical mobile 5.434 Radiolocation 5.433 3 700-4 200 FIXED -SATELLITE (space-to-Eart MOBILE except aeronautical mobili MOBILE except aeronautical mobili	3 603-3 700 FIXED SATELLITE (space-to- Earth) MOBIL except aeronautical mobile Radiolocation 5.435		
4 200-4 400	AERONAUTICAL MOBILE (R) 5.4 AERONAUTICAL RADIONAVIGA 5.437 5.439 5.440	136 TION 5.438		
4 400-4 500	FIXED MOBILE 5.440A			
4 500-4 800	FIXED FIXED-SATELLITE (space-to-Earth) MOBILE 5.440A) 5.441		

10100	CODE OF	CFR 47							
	A.M.								

102	Agency Secial Number							
103	IRAC Docket Number	1						
105	List Serial Number	1						
106	Secial Replaced, Delete Date							
107	Authorization Date							
106	Docket Numbers of Older Authorizations	DOWNGRADING INSTRUC		~	CLASSIFICATION			
M05530N	CHARACTERISTICS							
110 ^p	Forqueacy(ies)	DD FORM 1494, AUG	96 (EG)	PREVIC	NS EDITION	MAY BE USED.	Petet	Designed using Perform Pro, WHS (DICH, Au
111	Excluded Frequency Band	786	22	30	1 E	7.04		
112	Frequency Separation Criteria		35	1	N			
113*	Station Class	STC	4	20	Y	STC		
1144	Emission Designator	EMS	11	20	Y	EMS		
1154	Transmitter Power	PAR	9	20	Y	PAR		
116	Power Type		1	20	N			
117	Effective Radiated Power		6	20	N			
110	Power ERP Augmontation		1	- 20	N			
ME DAI	TE INFORMATION							
130	Time	TME	4	1	Y	TME		
131	Pescent Tame		2	1	N			
2403	Required Date		8	1	N			
242.5	Expiration Date	EXD	8	1	Y	EXD		
142	Review Date		8	1	N			
143	Revision Date	RVD	8	1	N	RVD		
144	Approval Authority Indicator		1	1	N			
145	ITU BR Registration		1,20	1	N			
146	DCS Track ID		6	20	N			
147	Joint Appricies	JNT	4	20	Y	*INT*		

- Critical to inform DOD strategic spectrum planning and Electromagnetic Spectrum Management (EMS) C2 decision-making
- DoD experiencing higher demands for spectrum
- Advancing capabilities to better inform planners and operators in the modern EMS maneuver space

The modern EMS environment demands advanced visualization capabilities for the warfighter

Path to Innovation

DISA DSO Spectrum Data Visualization Efforts

National Spectrum Consortium Effort

- Spectrum-related use-cases using structured and unstructured data
- Leveraging 3D gaming technology

DoD Rapid Innovation Fund

- Additional innovative approaches
- Effort is just beginning and generating a lot of interest

Objective: Improve DOD strategic and operational spectrum management decision-making through innovative visualization

- Exploring disruptive visualization technology to improve EMS situational awareness through enhanced modeling & simulation
- Leveraging commercial industry solutions such as 3D gaming technology
- GOAL: Provide improved spectrum data visualization capabilities to support strategic spectrum planning and EMS C2 decision-making

Sharing Systems Innovations:, 2025-2110 MHz Spectrum Sharing Use Case

Howard McDonald Defense Spectrum Organization 16 May 2018

- As a result of the Federal Communication Commission (FCC) AWS-3 auction, Federal agency operations are being displaced from 1755-1780 MHz
 - Several major DoD systems will suffer the loss of spectrum access
 - NTIA identified 2025-2110 MHz as a candidate band for relocation with DoD as co-primary status with Broadcast Auxiliary Service (BAS)
 - Many of the DoD activities in the continental U.S. take place in comparatively remote areas and fall into the fixed and mobile radiocommunication services, facilitating sharing this band
- These changes required an innovative approach to spectrum sharing.

- Four DoD systems planned to share spectrum BAS operations in the 2025-2110 MHz band:
 - Tactical Radio Relay (TRR)
 - Small Unmanned Aircraft Systems (SUAS)
 - High Resolution Video (HRV)
 - Tactical Targeting and Networking Technology (TTNT)

- DSO awarded four contracts for a dynamic sharing system between DoD operations transitioning to 2025 and incumbent ENG services
 - National Spectrum Consortium (NSC) Other Transaction Agreement (OTA)
 - Prototype architectures and attending concept of operations (CONOPS) and Use Case (UC) materials

Looking for innovative approaches that

- Maximizes geographic, bandwidth and time availability for DoD access to 2025-2110 MHz
- Minimizes/eliminates any required manual interactions by SBE Coordinators and Broadcasters (Coordinators are volunteers)
- Accommodates additional uses by broadcasters (new RX sites, itinerant use)
- Supports rapid response to breaking news events and unintended interference to broadcasters or DoD

Sharing Implementation Framework

take the 3-question survey available on the AFCEA 365 app

VISITUS DISA Booth #443

follow usfFacebook/USDISA**follow usf**Facebook/USDISA**fff**<t

www.disa.mil

