Validation Procedure for Developer’s Toolkit: VerifySeg
Validation Procedure for DII COE Kernel Platform Compliance: VerifySeg

Test Title: VerifySeg Validation Procedure

Candidate Platform: ____________________________________

Date:

Tester: __

Estimated Runtime: 45 minutes

Start Time: _____________
End Time: ____________________

Actual Runtime: ____________________________

Test Site/Organization: _________________________________

Overall Test Result: Circle One: PASS / FAIL
Configuration Validated

Hardware Platform: _____________________________________

System Software:

Network Type: __

Printer:

Local Devices (if any):

Test Purpose/Scope:
This document contains test procedures which verify the VerifySeg Developer Tool functionality as defined by the requirements in the DII COE I&RTS (Rev: 3.0 date July 1997) Section 5 and C-3.22

Description:
VerifySeg is used to validate that a segment conforms to the rules for defining a segment. It uses information in the SegDescrip subdirectory and must be run whenever the segment is modified. Command line parameters supported are as follows:

-c <file> Read command line arguments from the named <file>

-h, -H
Display Help information.

-p <path> Use <path> to establish a path for subsequent file names.

-R <file>
Use responses listed in <file> to answer questions.

-v

Show verbose messages while the tool runs

-V

Display the tool’s version number

-w

Suppress all warning messages

-e

Echo segment descriptor lines as they are processed (also includes the -f option)

-f

Print descriptor names as they are processed

-o

Process the segment and identify obsolete usage (e.g., ModName vs. SegName)

-s name
Validate just the single descriptor name
-t

Print a table showing required/optional descriptors for each segment type

-x [name]
Display the syntax for the named descriptor name, or all descriptors if name is not specified.

Run the VerifySeg tool for each segment. If the segment is an aggregate segment, VerifySeg must be run on each segment in the aggregate.

Unless otherwise indicated, all tools tested by the procedures below are to be run from the command line Note: All commands are to run from a single command line unless otherwise indicated.

The status environment variable is set to -1 (or 255) if any errors were encountered, and to 0 otherwise. Error and status messages are written to stdout as required.

Note: Care must be used when displaying the exit status code for a particular command. If you generate an error when trying to display the exit status code for a particular command, you will need to re-execute the command being evaluated since its exit status has been overwritten by the display error.

These test procedures exercise the following basic functionality, with the relevant test steps identified in parenthesis:

-Login (A), and Logout (Z)

-Setup Test Data and Confirm Validation Cell Configuration (B)

-Verify Basic Functionality of VerifySeg (C)

-Verify Functionality of VerifySeg Flags and Parameters (D)

-Verify that VerifySeg Can Properly Validate Segments of Each Segment Type (E)

-Verify that VerifySeg's Validation Mechanisms Detect COE Violations and Report basic Segment Errors (F)

-Use Automated Testing of VerifySeg Automated Testing Resources Not Yet Available (G)

Overall Test Result: The overall PASS/FAIL result for this test is determined as follows: The overall test result is "PASS" if and only if all steps marked as PASS/FAIL steps in the Observed Result column, have a test step "PASS" result.

Test Step Results: For each step with a "Circle One: PASS/FAIL" in the Observed Result column, the tester compares the directly observed Candidate Platform behavior with the "PASS" criteria. Unless other PASS criteria are noted in the test step, the test step result is "PASS" if and only if the Candidate Platform presents all of the behaviors and conditions described in the Expected Result column for that test step. The test step result if "FAIL" if the Candidate Platform fails to satisfy any of the PASS criteria.

If the test step result is "PASS", the tester will circle "PASS" and note the actual behaviors and conditions presented in the Observed Result column. If the observed result precisely matches the expected result, the Observed Result column for the step may contain the statement "as expected."

If the test step result is "FAIL", the tester will circle "FAIL" in the Observed Result column and note the actual behaviors and conditions presented in the Observed Result column. Additional documentation detailing the reasons for the test step failure is included in the Validation Test Report.
Note 1: Due to the complexity of any Candidate Platform, it is impossible to completely specify all aspects of their operation in the space provided. Many of the expected Candidate Platform behaviors for any test step are implicitly assumed based on industry practice, commercial testing or prior testing, and may not be explicitly described in the Expected Result column. DISA reserves the right to consider implicit as well as explicit PASS/FAIL criteria which could adversely affect the ability of the Candidate Platform to satisfy DoD mission requirements when used as a component of the DII.

If implicit PASS/FAIL criteria are involved in a "FAIL" determination, the tester will circle "FAIL" in the Observed Result column and note the objectionable behavior in the Observed Result column at the point of observation during the test. Additional documentation detailing the full rationale for the "FAIL" determination is to be included in the Validation Test Report.

Note2: Test steps which are "grayed out" (i.e., the entire table row is set to a gray background) are to be considered as waived by DISA for this test version only. Grayed out test steps are not to be executed nor is observed behavior to be recorded. These test steps may be returned to the overall test at a future date and are retained for information purposes only. PASS/FAIL criteria identified in these test steps will not be used in the determination of the overall test result.

Note3: The symbol “(” (inverted triangle) denotes a blank space. The “[RETURN]” symbol denotes a carriage return.

Software Trouble Reports:
This section describes all known Software Trouble Reports (STR) associated with VerifySeg Developer’s Tools as of the revision date of this document. These STRs should be taken into consideration when evaluating the expected and observed results of a particular test procedure

(Section D)

D.2.1 - KNOWN STR: (1581) VerifySeg -f (display Discriptors) does not print the descriptor names on Segments
(i.e., VerifySeg -f -p /h/AcctGrps/SysAdm

D.4.1 - KNOWN STR: Tool does not process single descriptors correctly

D.4.3 - KNOWN STR: Tool does not process single descriptors correctly

D.4.5 - KNOWN STR: Key for “I” is missing from table

Test Data / Media Required: The following test files are required: All test data is available on the Validation Host in the “/home1/KPC/VerifySeg” sub-directory.

Setup/Equipment Required: The server directory /home1/KPC must be NFS mounted on the Candidate Platform as /home1/KPC. The sub-directory /home1/KPC/VerifySeg should be copied underneath the sub-directory /home1/KPCTEST. Once copied, test data will be located under the /home1/KPCTEST/VerifySeg/testdata sub-directory

The user will perform test from the /home1/KPCTEST/VerifySeg/workarea sub-directory.

Follow any additional instructions outlined in sections A and B of this document.

It is assumed that the home directory for the DII COE development tools is either /h/DII_DEV or /h/TOOLS/DII_DEV on the Candidate Platform under test. However, if this is not the case, you must create the link /h/DII_DEV to the home directory of the DII COE development tools on the Candidate Platform

The tester should login to the Candidate Platform as ‘root’ in order to perform the test procedures described in this document.

Required Personnel:
One Tester. The tester should be familiar with Defense Information Infrastructure / Common Operating Environment (DII COE) Developer Tools and with basic UNIX commands.

Step
Operator Action
Expected Result
Observed Result

A
Login (Optional)

A.1
Power up the Candidate Platform.

Optional: Perform if not already powered up.
The DII COE login screen will appear.

A.2
Login to the root account using the appropriate root password.

Optional: Perform if not already logged in.
CDE will appear.
Startup

A.3
Open a dtterm window

From the Desktop Panel, Select Personal Applications (Notepad & Pen Icon) > Terminal.
A dtterm window will appear.
Startup

A.4
NFS mount /home1/KPC from the Validation Server to the Candidate Platform. Type:

su - root

Mount KPChost:/home1/KPC /home1/KPC

exit

Optional: Perform if files not already NFS mounted.
Command prompt returned.
Startup

B
Setup test data and confirm validation cell configuration.

B.1
Access the c-shell command environment and include the Developer’s Toolkit in the main path structure: Type:

csh

set path=($path /h/DII_DEV/bin)

Circle one: PASS / FAIL

B.2
Make and change directories to the KPC test local sub-directory. Type:

1. mkdir /home1/KPCTEST

2. chmod 777 /home1/KPCTEST

3. cd /home1/KPCTEST
System returns a command prompt.
Circle one: PASS / FAIL

B.3
Copy the entire “VerifySeg” test directory from “/home1/KPC/VerifySeg”. Type:

cp –pr /home1/KPC/VerifySeg.
System returns a command prompt.
Circle one: PASS / FAIL

B.4
Make sure that the VerifySeg/ directory and sub-directories have proper permissions set for testing.

1) Type:

chmod 777 VerifySeg

2) Type:

chmod 777 VerifySeg/testdata

3) Type:

chmod 777 VerifySeg/workarea
System returns a command prompt after each command is executed.
Circle one: PASS / FAIL

B.5
Change directory to the VerifySeg work area. Type:

cd

/home1/KPCTEST/VerifySeg/workarea
System returns a command prompt.
Circle one: PASS / FAIL

B.6
Source VerifySeg resource file to ensure proper system setup for tools testing:

Type:

source VerifySeg.cshrc
System returns a command prompt.
Circle one: PASS / FAIL

B.7
Configure the test data files for your platform type. To do this, you will need to modify the SegInfo file for each segment under the /home1/KPCTEST/VerifySeg/testdata sub-directory. Do the following:

a) Type:

vi

/home1/KPCTEST/VerifySeg/testdata/<Segment Name> /SegDescrip/SegInfo

b) Under the [Hardware] descriptor, locate the ‘$CPU/$OPSYS’ keyword pair that is appropriate for your workstation.

c) Make sure that the lines containing these keywords are not commented out. If they are, uncomment them by removing the “#” symbol from the beginning of each line. Make sure that all other ‘$CPU/$OPSYS’ keyword pairs are commented out (i.e. have a “#” symbol the beginning of each line).

d) Lastly, save and exit this file.

NOTE: The SegInfo file for test segments at hand will need to be modified if the tester is perfoming this test on any operating system other than Sun Solaris.
After each file has been modified and saved, the system will return with a command prompt.
Circle one: PASS / FAIL

C.
Verify Basic Functionality of VerifySeg

C.1
Verify the VerifySeg “Help” feature
ADVANCE \d3

C.1.1
At the system prompt, display the VerifySeg help information:

ADVANCE \d3Type:

 VerifySeg –h
ADVANCE \d3The tool’s help information should be displayed to the screen

ADVANCE \d3
Circle one: PASS / FAIL

C.1.2
Verify CalcSpace exit status code code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

C.2
Verify the VerifySeg “Version” feature
ADVANCE \d3

C.2.1
At the system prompt, display the VerifySeg help information:

ADVANCE \d3Type:

 VerifySeg –V
ADVANCE \d3The tool’s version number and date should be displayed to the screen

ADVANCE \d3
Circle one: PASS / FAIL

C.2.2
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

C.3
Verify that VerifySeg can process and validate a segment using a valid path parameter
ADVANCE \d3

C.3.1
Run VerifySeg on the nSampleAcctGrp test segment. Type:

VerifySeg –p /home1/KPCTEST/VerifySeg/testdata nSampleAcctGrp
VerifySeg should successfully locate the segment in the path specified and display only warning and informational messages. No error message should be displayed
Circle one: PASS / FAIL

C.3.2
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

D.
Verify functionality of VerifySeg flags and parameters

D.1
Verify that VerifySeg can display “Descriptor Line” when processing a segment
ADVANCE \d3

D.1.1
Verify that the tool accepts an echo flag and a valid path parameter. Type:

 VerifySeg –e –p /home1/KPCTEST/VerifySeg/testdata VerifySegTestSeg
a) VerifySeg should successfully locate the segment in the path specified

b) Descriptor lines should be displayed as they are processed

c) Only warning and informational messages should be displayed. No error message should be displayed
Circle one: PASS / FAIL

D.1.2
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

D.2
Verify that VerifySeg can display “Descriptor Files” when processing a segment
ADVANCE \d3

D.2.1
Verify that the tool accepts an echo file flag and a valid path parameter.

ADVANCE \d3Type:

 VerifySeg –f –p /home1/KPCTEST/VerifySeg/testdata VerifySegTestSeg

KNOWN STR: (1581) VerifySeg -f (display Discriptors) does not print the descriptor names on Segments (i.e., VerifySeg -f -p /h/AcctGrps SysAdm).

NOTE: System behavior as described above is acceptable and constitutes a ‘PASS’ result for this test.
a) VerifySeg should successfully locate the segment in the path specified

b) Descriptor files should be displayed as they are processed (see comment field)
c) Only warning and informational messages should be displayed. No error message should be displayed
Circle one: PASS / FAIL

D.2.2
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

D.3
Verify that VerifySeg can identify obsolete usage within a segment using the path parameter
ADVANCE \d3

D.3.1
Verify that the tool can report obsolete useage. Type:

 VerifySeg –o –p /home1/KPCTEST/VerifySeg/testdata VerifySegTestSeg
a) VerifySeg should successfully locate the segment in the path specified

b) Tool should identify and report obsolete descriptor files “ModName” and “SegType”

c) Only warning and informational messages should be displayed. No error message should be displayed
Circle one: PASS / FAIL

D.3.2
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

D.4
Verify that VerifySeg can validate a single descriptor within a segment using the path parameter
ADVANCE \d3

D.4.1
Verify that the tool can validate a single descriptor file. Type:

 VerifySeg –s SegInfo –p /home1/KPCTEST/VerifySeg/testdata VerifySegTestSeg

KNOWN STR:
ADVANCE \d3Tool does not process single descriptors files correctly. System will return with only a “Results of verification” listing.

NOTE: System behavior as described above is acceptable and constitutes a ‘PASS’ result for this test.
a) VerifySeg should successfully locate the segment in the path specified

b) Tool should only validate the “SegInfo” descriptor for the specified segment (see comment field)

c) Only warning and informational messages should be displayed. No error message should be displayed
Circle one: PASS / FAIL

D.4.2
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

D.4.3
Verify that the tool can validate a single descriptor. Type:

 VerifySeg –s Security –p /home1/KPCTEST/VerifySeg/testdata VerifySegTestSeg

KNOWN STR:
ADVANCE \d3Tool does not process single descriptors files correctly. System may display a fatal message when the “Security” descriptor is used.

NOTE: System behavior as described above is acceptable and constitutes a ‘PASS’ result for this test.
a) VerifySeg should successfully locate the segment in the path specified

b) Tool should only validate the “Security” descriptor for the specified segment (see comment field).

c) Only warning and informational messages should be displayed. No error message should be displayed
Circle one: PASS / FAIL

D.4.4
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned

[Fatal Error will yield a non-zero exit code]
Circle one: PASS / FAIL

D.5
Verify that VerifySeg can display a valid table of required/optional descriptors
ADVANCE \d3

D.5.1
Verify that the tool can display valid descriptors. Type:

VerifySeg –t

KNOWN STR:
ADVANCE \d3Key for “I” is missing from table.

NOTE: System behavior as described above is acceptable and constitutes a ‘PASS’ result for this test.
Tool should display a table of required/optional descriptors for each segment type.
Circle one: PASS / FAIL

D.5.2
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

D.6
Verify that VerifySeg can display the valid syntax of a specific descriptor
ADVANCE \d3

D.6.1
Verify that the tool can display the syntax for each SegInfo descriptor

D.6.1.1
Verify that the tool can display the syntax for a valid descriptor. Type:

VerifySeg –x AcctGroup
Tool should display the syntax for the AcctGroup descriptor.
Circle one: PASS / FAIL

D.6.1.2
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

D.6.1.3
Verify that the tool can display the syntax for a valid descriptor. Type:

VerifySeg –x AppPaths

NOTE: This Descriptor is valid for NT platforms only.
Tool should display the syntax for the AppPaths descriptor (see comment field).
Circle one: PASS / FAIL

D.6.1.4
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

D.6.1.5
Verify that the tool can display the syntax for a valid descriptor. Type:

VerifySeg –x COEServices
Tool should display the syntax for the COEServices descriptor.
Circle one: PASS / FAIL

D.6.1.6
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

D.6.1.7
Verify that the tool can display the syntax for a valid descriptor. Type:

VerifySeg –x Community
Tool should display the syntax for the Community descriptor.
Circle one: PASS / FAIL

D.6.1.8
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

D.6.1.9
Verify that the tool can display the syntax for a valid descriptor. Type:
 VerifySeg –x Comm.deinstall

NOTE: This command displays the same information as Step D.6.1.7.
Tool should display the syntax for the Comm.deinstall descriptor.
Circle one: PASS / FAIL

D.6.1.10
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

D.6.1.11
Verify that the tool can display the syntax for a valid descriptor. Type:

VerifySeg –x Compat
Tool should display the syntax for the Compat descriptor.
Circle one: PASS / FAIL

D.6.1.12
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

D.6.1.13
Verify that the tool can display the syntax for a valid descriptor. Type:

VerifySeg –x Conflicts
Tool should display the syntax for the Conflicts descriptor.
Circle one: PASS / FAIL

D.6.1.14
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

D.6.1.15
Verify that the tool can display the syntax for a valid descriptor. Type:

VerifySeg –x Data
Tool should display the syntax for the Data descriptor.
Circle one: PASS / FAIL

D.6.1.16
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

D.6.1.17
Verify that the tool can display the syntax for a valid descriptor. Type:

VerifySeg –x Database

Note: Depending on the version of this tool, the tool may display a message indicating that that the descriptor is not currently implemented.

System behavior as described above is acceptable and constitutes a ‘PASS’ result for this test.

Tool should display the syntax for the Database descriptor (see comment field).
Circle one: PASS / FAIL

D.6.1.18
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

D.6.1.19
Verify that the tool can display the syntax for a valid descriptor. Type:

VerifySeg –x Direct
Tool should display the syntax for the Direct descriptor.
Circle one: PASS / FAIL

D.6.1.20
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

D.6.1.21
Verify that the tool can display the syntax for a valid descriptor. Type:

VerifySeg –x FilesList
Tool should display the syntax for the FilesList descriptor.
Circle one: PASS / FAIL

D.6.1.21
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

D.6.1.22
Verify that the tool can display the syntax for a valid descriptor. Type:

VerifySeg –x Hardware
Tool should display the syntax for the Hardware descriptor.
Circle one: PASS / FAIL

D.6.1.23
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

D.6.1.24
Verify that the tool can display the syntax for a valid descriptor. Type:

VerifySeg –x Icons
Tool should display the syntax for the Icons descriptor.
Circle one: PASS / FAIL

D.6.1.25
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

D.6.1.26
Verify that the tool can display the syntax for a valid descriptor. Type:

VerifySeg –x Menus
Tool should display the syntax for the Menus descriptor.
Circle one: PASS / FAIL

D.6.1.27
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

D.6.1.28
Verify that the tool can display the syntax for a valid descriptor. Type:

VerifySeg –x Network
Tool should display the syntax for the Network descriptor.
Circle one: PASS / FAIL

D.6.1.29
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

D.6.1.30
Verify that the tool can display the syntax for a valid descriptor. Type:

VerifySeg –x Permissions
Tool should display the syntax for the Permissions descriptor.
Circle one: PASS / FAIL

D.6.1.31
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

D.6.1.32
Verify that the tool can display the syntax for a valid descriptor. Type:

VerifySeg –x Processes
Tool should display the syntax for the Processes descriptor.
Circle one: PASS / FAIL

D.6.1.33
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

D.6.1.34
Verify that the tool can display the syntax for a valid descriptor. Type:
 VerifySeg –x ReqrdScripts

NOTE: This descriptor is valid for UNIX platforms only
Tool should display the syntax for the ReqrdScripts descriptor (see comment field).
Circle one: PASS / FAIL

D.6.1.35
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

D.6.1.36
Verify that the tool can display the syntax for a valid descriptor. Type:

VerifySeg –x Requires
Tool should display the syntax for the Requires descriptor.
Circle one: PASS / FAIL

D.6.1.37
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

D.6.1.38
Verify that the tool can display the syntax for a valid descriptor. Type:

VerifySeg –x Security
Tool should display the syntax for the Security descriptor.
Circle one: PASS / FAIL

D.6.1.39
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

D.6.2
Verify that the tool can display the syntax for all Segment descriptors

D.6.2.1
Verify that the tool can display the syntax or message information for all valid segment descriptors. Type:

VerifySeg –x
Tool should display the syntax and/or informational messages for all segment descriptors.
Circle one: PASS / FAIL

D.6.2.2
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

D.7
Verify that the tool can operate in ‘verbose’ mode and display the appropriate information.

D.7.1
Verify that the tool can display verbose message when validating segment. Type:
 VerifySeg –v –p /home1/KPCTEST/VerifySeg/testdata VerifySegTestSeg
Tool should display verbose message lines while it validates the segment. All verbose message lines should be preceeded by a line beginning with a “(V)” and followed by a number of dash (“-“) symbols. (e.g. “(V) --------“)
Circle one: PASS / FAIL

D.7.2
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

D.8
Verify that the tool can suppress warning messages.

D.8.1
Verify that the tool can suppress warning messages when segment does not contains errors.

D.8.1.1
Verify that the tool can display verbose message when validating segment. Type:
 VerifySeg –w –p /home1/KPCTEST/VerifySeg/testdata VerifySegTestSeg.WARN
a) Tool should not display individual warning message lines while it validates the segment.

b) Tool should only display the total number of errors and total number of warnings after the segment has been processed.

(e.g.

Totals

Errors: 0

Warnings: 7)
Circle one: PASS / FAIL

D.8.1.2
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

D.8.2
Verify that the tool can suppress warning messages when segment contains errors.

D.8.2.1
Verify that the tool can display verbose message when validating segment. Type:
 VerifySeg –w –p /home1/KPCTEST/VerifySeg/testdata VerifySegTestSeg.ERRORS
a) Tool should not display individual warning message lines while it validates the segment.

b) Tool should display individual error message lines.

c) Tool should display the total number of errors and total number of warnings after the segment has been processed.

(e.g.

Totals

Errors: 2

Warnings: 0)
Circle one: PASS / FAIL

D.8.2.2
Verify the exit status code for the previous command by typing the following:

echo $status
 A –1 or 255 is returned
Circle one: PASS / FAIL

D.9
Verify that the tool can accept command line arguments from a file.

D.9.1
Verify that the tool can accept command line arguments from a file. Type:
 VerifySeg –C

/home1/KPCTEST/VerifySeg/workarea/VerifySeg.arguments
Tool should process the VerifySegTestSeg segment and display verbose informational and warning messages.
Circle one: PASS / FAIL

D.9.2
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

D.10
Verify that the tool can accept run-time responses from a file.

[Not Yet Implemented]

D.10.1
Verify that the tool can accept command line arguments from a file. Type:
 VerifySeg –R

/home1/KPCTEST/VerifySeg/workarea/VerifySeg.responses

-p /home1/KPCTEST/VerifySeg/testdata/VerifySegTestSeg

Tool should display the informational and warning messages.
Circle one: PASS / FAIL

D.10.2
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

E.
Verify that VerifySeg can properly validate Segments of each Segment Type

E.1
Verify that VerifySeg can validate a segment of type “COTS”
ADVANCE \d3

E.1.1
Verify that tool can validate a “COTS” segment: Type:
 VerifySeg –p /home1/KPCTEST/VerifySeg/testdata nSampleCOTS
a) VerifySeg should successfully locate the segment in the path specified

b) No error messages should be displayed. Only “Result of verification” listing should be displayed.
Circle one: PASS / FAIL

E.1.2
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

E.2
Verify that VerifySeg can validate a segment of type “Data”
ADVANCE \d3

E.2.1
Verify that tool can validate a “Data” segment: Type:
 VerifySeg –p /home1/KPCTEST/VerifySeg/testdata nSampleDataLocal
a) VerifySeg should successfully locate the segment in the path specified

b) No error messages should be displayed. Only “Result of verification” listing should be displayed
Circle one: PASS / FAIL

E.2.2
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

E.3
Verify that VerifySeg can validate a segment of type “Software”
ADVANCE \d3

E.3.1
Verify that tool can validate a “Data” segment: Type:
 VerifySeg –p /home1/KPCTEST/VerifySeg/testdata nSampleSW
a) VerifySeg should successfully locate the segment in the path specified

b) No error messages should be displayed. Only “Result of verification” listing should be displayed
Circle one: PASS / FAIL

E.3.2
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

E.4
Verify that VerifySeg can validate a segment of type “Aggregate”
ADVANCE \d3

E.4.1
Verify that tool can validate an “Aggregate” segment: Type:
 VerifySeg –p /home1/KPCTEST/VerifySeg/testdata nSampleAgg
a) VerifySeg should successfully locate the segment in the path specified

b) No error messages should be displayed. Only “Result of verification” listing should be displayed
Circle one: PASS / FAIL

E.4.2
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

E.5
Verify that VerifySeg can validate a segment of type “COE Component”
ADVANCE \d3

E.5.1
Verify that tool can validate an “COE Component” segment: Type:
 VerifySeg –p /home1/KPCTEST/VerifySeg/testdata nSampleCOEComponent
a) VerifySeg should successfully locate the segment in the path specified

b) No error messages should be displayed. Only “Result of verification” listing should be displayed
Circle one: PASS / FAIL

E.5.2
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

E.6
Verify that VerifySeg can validate a segment of type “Patch”
ADVANCE \d3

E.6.1
Verify that tool can validate an “Patch” segment: Type:
 VerifySeg –p /home1/KPCTEST/VerifySeg/testdata nSampleSW.P1
a) VerifySeg should successfully locate the segment in the path specified

b) No error messages should be displayed. Only “Result of verification” listing should be displayed
Circle one: PASS / FAIL

E.6.2
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

E.7
Verify that VerifySeg can validate a segment of type “Account Group”
ADVANCE \d3

E.7.1
Verify that tool can validate an “Account Group” segment: Type:
 VerifySeg –p /home1/KPCTEST/VerifySeg/testdata nSampleAcctGrp
a) VerifySeg should successfully locate the segment in the path specified

b) Only warning and/or informational messages should be displayed (if at all). No error messages should be displayed
Circle one: PASS / FAIL

E.7.2
Verify the exit status code for the previous command by typing the following:

echo $status
 A 0 is returned
Circle one: PASS / FAIL

F.
Verify VerifySeg validation mechanisms

F.1
Verify that VerifySeg’s validation mechanisms detect COE violations and report basic segment errors.

ADVANCE \d3[Test to be extended]
ADVANCE \d3

Verify that tool can detect segment anomalies and display appropriate error messages.

Print the following file by typing:

lp /home1/KPCTEST/ VerifySeg/workarea/

VerifySeg.errOUTPUT
Obtain hardcopy of the VerifySeg. errOUTPUT file.

Circle one: PASS / FAIL

Type:
VerifySeg –p /home1/KPCTEST/

VerifySeg/testdata VerifySegTestSeg.ERRORS >& OUTPUT.err
VerifySeg should successfully locate the segment in the path specified.
Circle one: PASS / FAIL

 Verify the exit status code for the previous command by typing the following:

echo $status
A value of –1 or 255 is returned.

Circle one: PASS / FAIL

F.1.1
Type:

cat

/home1/KPCTEST/VerifySeg/workarea/OUTPUT.err
Compare the OUTPUT.err file with the VerifySeg.errOUTPUT file. OUTPUT. err file should contain all of the error messages contained in the VerifySeg.errOUTPUT file.
Circle one: PASS / FAIL

F.2
Verify that VerifySeg’s validation mechanisms detect segment anomalies and report basic segment warnings

ADVANCE \d3[Test to be extended]
ADVANCE \d3

Verify that tool can detect segment anomalies and display appropriate warning messages

Print the following file by typing:

Lp

/home1/KPCTEST/VerifySeg/workarea/VerifySeg.warnOUTPUT
Obtain hardcopy of the VerifySeg.warnOUTPUT file.
Circle one: PASS / FAIL

Type:
VerifySeg –p /home1/KPCTEST/VerifySeg/testdata VerifySegTestSeg.WARN >& OUTPUT.warn
VerifySeg should successfully locate the segment in the path specified.
Circle one: PASS / FAIL

Verify the exit status code for the previous command: Type:

echo $status
A 0 is returned.

Circle one: PASS / FAIL

F.2.1
Type:

cat /home1/KPCTEST/VerifySeg/workarea/OUTPUT.warn
Compare the OUTPUT.warn file with the VerifySeg.warnOUTPUT. OUTPUT.warn should contain all of the warning messages contained in VerifySeg.warnOUTPUT.
Circle one: PASS / FAIL

G
Use Automated Testing of VerifySeg

Automated Testing Resources Not Yet Available]

G.1
Automation

ADVANCE \d3This section provides automatic feedback by using the script xxx, which runs all testcases automatically. The appropriate output messages will be recorded in output files within each SegDescriptor directory structure.

Note: Testcases for each SegDescrip can also be tested individually by selecting a specific SegDescrip area from the automated script.

 G.1.1
Automatically test VerifySeg:

ADVANCE \d3a) Execute the test script from the appropriate directory.

b) Within each SegDescrip test area, compare the README for that area with the RESULTS>{output} file for each testcase.

ADVANCE \d3** 9/3/96: Baseline output files should be created during the next formal test of VerifySeg. For future tests, these baseline files can be compared to the actual results files for immediate test feedback (rather than viewing the output files and README for each testcase).ADVANCE \d3
Results/output files should match testcase info given in the README for each SegDescrip test area.
Circle one: PASS / FAIL

Z
Logout (optional)

Not required. Use if no further validation is to be done.

Z.1
Remove the testing directory by typing:

rm –r /home1/KPCTEST
System should return the command prompt
Shutdown

Z.2
Unmount the KPC directory exported from the Validation Host. Type:

“umount /home1/KPC”
A message confirms that the filesystem has been dismounted.
Shutdown

Z.3
Select System > Close All

Not required. Use if no further validation is to be done.
All windows close.
Shutdown

Z.4
Select Exit button from CDE.

Not required. Use if no further validation is to be done.
Logout confirmation window appears.
Shutdown

Z.5
Select Continue > Logout

Not required. Use if no further validation is to be done.
System exits and the DII COE login screen appears.
Shutdown

End of VerifySeg Validation Procedure

VerifySeg VP

Page 1
Rev. Date: 30
 January 1998

VerifySeg Validation Procedure Update

Page 1 of 30

DII COE 3.3.0.0 / Rev. Date: 08 November 1999

