Validation Procedure for DII COE Kernel Platform Certification: CanInstall

Validation Procedure for DII COE Kernel Platform Compliance: CanInstall

Test Title: CanInstall Validation Procedure

Candidate Platform:

Date: ___

Tester: __
Estimated Runtime: _________1 Hour_____________________

Start Time: ___________
End Time: _______________
Actual Runtime: ______________________________________
Test Site/Organization:

Overall Test Result: Circle One: PASS / FAIL
Configuration Validated

Hardware Platform:

System Software:

Network Type:

Printer:

Local Devices (if any):

Test Purpose/Scope:
This test verifies the DII COE CanInstall Developer Tool functionality as defined by the requirements in the DII COE I&RTS (Version 3.0, dated July 1997). This also finds out some enhancements for completeness purpose.

Description: CanInstall tests a segment to see if it can be installed. To be installable, all required segments must already be on the disk, and there must not be any conflicting segments on the disk. Tester will run the command CanInstall with parameters –h, -H, -\?, -p , -V, -v, and –w. Tool runs in the following format:

CanInstall [parameter] <Segment Path> <Test Segment’s Name>
These test procedures exercise the following basic functionality, with the relevant test steps identified in parenthesis:

-Login (A), and Logout (Z)

-Setup Test Initialization (B)

-Verify that the Tool Can Display its Help Text (C)

-Verify the Tool with Invalid Parameters (D)

-Verify Detailed Functionality of the Tool (E)

-Run Tool with Valid Segments (F)

-Cleanup after Segment Tests (G)

Overall Test Result: The overall PASS/FAIL result for this test is determined as follows: The overall test result is "PASS" if and only if all steps marked as PASS/FAIL steps in the Observed Result column, have a test step "PASS" result.

Test Step Results: For each step with a "Circle One: PASS/FAIL" in the Observed Result column, the tester compares the directly observed Candidate Platform behavior with the "PASS" criteria. Unless other PASS criteria are noted in the test step, the test step result is "PASS" if and only if the Candidate Platform presents all of the behaviors and conditions described in the Expected Result column for that test step. The test step result if "FAIL" if the Candidate Platform fails to satisfy any of the PASS criteria.

If the test step result is "PASS", the tester will circle "PASS" and note the actual behaviors and conditions presented in the Observed Result column. If the observed result precisely matches the expected result, the Observed Result column for the step may contain the statement "as expected."

If the test step result is "FAIL", the tester will circle "FAIL" in the Observed Result column and note the actual behaviors and conditions presented in the Observed Result column. Additional documentation detailing the reasons for the test step failure is included in the Validation Test Report.
Note 1: Due to the complexity of any Candidate Platform, it is impossible to completely specify all aspects of their operation in the space provided. Many of the expected Candidate Platform behaviors for any test step are implicitly assumed based on industry practice, commercial testing or prior testing, and may not be explicitly described in the Expected Result column. DISA reserves the right to consider implicit as well as explicit PASS/FAIL criteria which could adversely affect the ability of the Candidate Platform to satisfy DoD mission requirements when used as a component of the DII.

If implicit PASS/FAIL criteria are involved in a "FAIL" determination, the tester will circle "FAIL" in the Observed Result column and note the objectionable behavior in the Observed Result column at the point of observation during the test. Additional documentation detailing the full rationale for the "FAIL" determination is to be included in the Validation Test Report.

Note2: Test steps which are "grayed out" (i.e., the entire table row is set to a gray background) are to be considered as waived by DISA for this test version only. Grayed out test steps are not to be executed nor is observed behavior to be recorded. These test steps may be returned to the overall test at a future date and are retained for information purposes only. PASS/FAIL criteria identified in these test steps will not be used in the determination of the overall test result.

Note3: The symbol “(” (inverted triangle) denotes a blank space. The “[RETURN]” symbol denotes a carriage return.
Test Data / Media Required: The following test data file is required: CanInstall.tar. All test data is available on the Validation Host in the “/home1/KPC/CanInstall” sub-directory.

Setup/Equipment Required: The DII COE Kernel 3.3.0.0 and the corresponding developer’s toolkit (/h/DII_DEV) have been installed on the Candidate Platform. The working directory used for testing is /home1/KPC/CanInstall.tests.

Required Personnel: One Tester. The tester is assumed to be very familiar with Unix application platforms, but may not be familiar with the Defense Information Infrastructure / Common Operating Environment (DII COE).

Step
Operator Action
Expected Result
Observed Result

A
Login (Optional)

A.1
Power up the Candidate Platform.

Optional: Use if not already powered up.
The DII COE login screen will appear.
Startup

A.2
Login to sysadmin account using the default sysadmin and appropriate password combination.

Optional: Use if not already logged in.
Menu bar, security classification and CDE will appear.
Startup

A.3
NFS mount /home1/KPC/CanInstall from the Validation Host to the Candidate Platform. Type:

su – root

mount KPChost:/home1/KPC/CanInstall <space> /home1/KPC/CanInstall.tests

exit

Optional: Use if directory is not already mounted.
A message confirms that the files system has been mounted. The /home1/KPC/CanInstall is exported by the Validation Host.
Startup

B
Setup test initialization.

B.1
Open an xterm by selecting the following items:

Application Manager >DII Apps >SA_default >xterm
An Xterm window will appear.
Circle one: PASS / FAIL

B.2
Create working directory

Type: mkdir –p /home1/KPC/CanInstall.tests
System will return a command prompt.
Circle one: PASS / FAIL

B.3
Change to the working directory.

Type: cd /home1/KPC/CanInstall.tests
System will return a command prompt.
Circle one: PASS / FAIL

B.4
Copy tar format file from /home1/KPC/CanInstall to the working directory, Type:

 cp –p <space> /home1/KPC/CanInstall/CanInstall.tar <space> ./
System will return a command prompt.
Circle one: PASS / FAIL

B.5
Untar the file CanInstall.tar.

Type: tar –xvpf CanInstall.tar
Untar files display on screen accordingly and system will return a command prompt.
Circle one: PASS / FAIL

B.6
Set path to /h/DII_DEV/bin

Type: set path=($path /h/DII_DEV/bin)

Optional: use if path hasn’t been set to this directory
System return will a command prompt.
Circle one: PASS / FAIL

B.7
Make sure that C shell is utilized.

Type: echo $SHELL
“/bin/csh” will yield as the result and system will return a command prompt.
Circle one: PASS / FAIL

B.8
Copy the BRAVO segment from the working directory /home1/KPC/CanInstall.tests

to /h

Type:

cp –rp<space>BRAVO<space> /h/

Note: before running the tool, Remove BRAVO directory if it exists under /h.
The BRAVO directory should be created under /h and system will return a command prompt.
Circle one: PASS / FAIL

B.9
Copy the ALPHA segment from the working directory

/home1/KPC/CanInstall.

to /h

Type: cp –rp <space> ALPHA <space> /h/

Note: before running the tool, Remove ALPHA directory if it exists under /h.
The ALPHA directory should be created under /h and system will return a command prompt.
Circle one: PASS / FAIL

C
Verify that the tool can run with valid parameters.

C.1
Verify that the tool can display its help text.

C.1.1
Run the tool with –h parameter.

Type: CanInstall –h
The tool’s help should be displayed to the screen and system will return a command prompt.
Circle one: PASS / FAIL

C.1.1.1
Check the value of $status.

Type: echo $status
0 should display and system will return a command prompt.
Circle one: PASS / FAIL

C.1.2
Run the tool with –H parameter.

Type: CanInstall –H
The tool’s help should be displayed to the screen and system will return a command prompt.
Circle one: PASS / FAIL

C.1.2.1
Check the value of $status.

Type: echo $status
0 should display and system will return a command prompt.
Circle one: PASS / FAIL

C.1.3
Run the tool with –\? Parameter.

Type: CanInstall -\?
The tool’s help should be displayed to the screen and system will return a command prompt.
Circle one: PASS / FAIL

C.1.3.1
Check the value of $status.

Type: echo $status
0 should display and system will return a command prompt.
Circle one: PASS / FAIL

C.2
Verify that the tool can display its version

C.2.1
Run the tool with –V parameter.

Type: CanInstall –V
The tool’s version number (currently 1.0.0.9) will display and system will return a command prompt.
Circle one: PASS / FAIL

C.2.1.1
Check the value of status.

Type: echo $status
0 should display and system will return a command prompt.
Circle one: PASS / FAIL

C.3
Verify that the tool defaults to /h directory when no path provided.

C.3.1
Create the directory TestSeg under /h

Type: mkdir /h/TestSeg
Optional: use if /h/TestSeg directory does not exist.
The TestSeg directory will be created under /h and system will return a command prompt.
Circle one: PASS / FAIL

C.3.2
Copy TestSeg directory from the current working directory to /h/TestSeg directory.

Type: cp –rp <space> /home1/KPC/CanInstall.tests/TestSeg <space>/h/TestSeg/
The TestSeg directory is copied to /h/TestSeg and system will return a command prompt
Circle one: PASS / FAIL

C.3.2
Run the tool without path parameter –p provided.

Type: CanInstall TestSeg
Screen will display message “the segment can be successfully installed without error!”, and system will return a command prompt
Circle one: PASS / FAIL

C.3.3
Check the value of status.

Type: echo $status
0 should display and system will return a command prompt.
Circle one: PASS / FAIL

C.4
Verify the tool accepts a valid path parameter

C.4.1
Run the tool with option –p

Type: CanInstall –p <space>

/home1/KPC/CanInstall.tests <space>Validseg
The tool will accept the path parameter with no errors or warnings returned.
Circle one: PASS / FAIL

C.4.1.1
Check the value of status.

Type: echo $status
0 should display and system will return a command prompt.
Circle one: PASS / FAIL

D
Verify the tool with Invalid Parameters

D.1
Verify that the tool will return its help text if no parameters and no segment provided.

Type: CanInstall
The tool’s help text will display and system will return a command prompt.
Circle one: PASS / FAIL

D.1.1
Check the value of status.

Type: echo $status
-1 should display and system will return a command prompt.
Circle one: PASS / FAIL

D.2
Verify that the tool will return error if specified segment does not exist on system, and /h directory search when no path is given.

Type: CanInstall Tester
Note: remove Tester directory if it exist under /h directory.
Error message, e.g., Segment Not Found: /h/Tester …does not exist, will indicate that segment specified does not exist.
Circle one: PASS / FAIL

D.2.1
Check the value of status.

Type: echo $status
-1 should display and system will return a command prompt.
Circle one: PASS / FAIL

E
Verify detailed functionality of the tool

E.1
Verify that the tool returns error to indicated of running VerifySeg tool if Validated file is outdated or missing.

E.1.1
Verify the tool returns error if Validated file is outdated.

E.1.1.1
Run the tool with TEST_Conflict1

Type: CanInstall –p <space>

/home1/KPC/CanInstall.tests <space>TEST_Conflict1
Error message will display: “Could not validate…rerun VerifySeg”.
Circle one: PASS / FAIL

E.1.1.2
Check the value of status.

Type: echo $status
-1 should display and system will return a command prompt.
Circle one: PASS / FAIL

E.1.2
Verify the tool returns error if Validated file is missing.

E.1.2.1
Run the tool returns error if Validated file is missing in the TEST_Conflict2

Type: CanInstall –p <space>

/home1/KPC/CanInstall.tests <space>TEST_Conflict2
Error message will display: “Could not validate…rerun VerifySeg”.
Circle one: PASS / FAIL

E.1.2.2
Check the value of status.

Type: echo $status
-1 should display and system will return a command prompt.
Circle one: PASS / FAIL

E.1.3
Re-run VerifySeg tool on conflict segment to update/create (in case missing) Validate file and then re-run CanInstall tool to see that the segment can be installable

E.1.3.1
Save the original Validated file to Validate.org

Type: cp –p <space> /home1/KPC/CanInstall.tests/TEST_Conflict1/SegDescrip/Validated <space>

Validated.org
Validate.org will be created under the described directory and system will return a command prompt
Circle one: PASS / FAIL

E.1.3.2
Re-run VerifySeg tool

Type: VerifySeg –p <space>

/home1/KPC/CanInstall.tests <space>

TEST_Conflict1
No error message will display and system will return a command prompt.
Circle one: PASS / FAIL

E.1.3.3
Check the value of status

Type: echo $status

0 should display and system will return a command prompt.
Circle one: PASS / FAIL

E.1.3.4
Re-run the CanInstall tool on the updated segment

Type: CanInstall –p <space> /home1/KPC/CanInstall.tests <space> TEST_Conflict1
CanInstall displays: “The segment can be successfully installed without error!”
Circle one: PASS / FAIL

E.1.3.5
Check the value of status.

Type: echo $status
0 should display and system will return a command prompt.
Circle one: PASS / FAIL

E.2
Verify tool functionality with conflicting test segment

E.2.1
Run the tool with the conflicting test segment in /h/BRAVO. Type:

CanInstall –p <space> /home1/KPC/CanInstall.tests <space> TEST_Info.34.conflicts
The tool will indicate that the segment is not installable because of conflicting segment.
Circle one: PASS / FAIL

E.2.1.1
Check the value of status

Type: echo $status
-1 should display and system will return a command prompt.
Circle one: PASS / FAIL

E.3
Verify tool functionality without conflicting data

E.3.1
Run the tool without conflicting data.

Type: CanInstall –p <space> /home1/KPC/CanInstall.tests <space> TEST_SegInfo.17.NoConflicts
Warning message will indicate: [Conflicts] … may indicate an error … segment can be successfully installed without error”
Circle one: PASS / FAIL

E.3.1.1
Check the value of status

Type: echo $status
0 should display and system will return a command prompt.
Circle one: PASS / FAIL

E.4
Verify tool functionality when required segments are not on the disk

E.4.1
Run the tool with the required test segment BRAVO with version 2.0.0.0 in the /h directory.

Type: CanInstall –p <space> /home1/KPC/CanInstall.tests <space> TEST_SegsNotFound
The tool will indicate that the segment is not installable … required segments not found on disk.”.
Circle one: PASS / FAIL

E.4.1.1
Check the value of status

Type: echo $status
-1 should display and system will return a command prompt.
Circle one: PASS / FAIL

E.5
Verify tool functionality with conflicting data in Conflicts and Requires descriptors within SegInfo, and verbose flag

E.5.1
Run the tool with conflicting segment BRAVO and required segment ALPHA version 2.0.0.0 under /h directory.

Type: CanInstall –p <space> /home1/KPC/CanInstall.tests <space>TEST_IncompatConflictReq
The tool will indicate that the segment is not installable.
Circle one: PASS / FAIL

E.5.2
Check the value of status

Type: echo $status
-1 should display and system will return a command prompt.
Circle one: PASS / FAIL

E.6
Verify the tool functionality to detect missing required and conflicting test segments

E.6.1
Run the tool with required segment /h/BRAVO

Type: CanInstall –p <space> /home1/KPC/CanInstall.tests <space>TEST_SegInfo.28.reqmis
The tool will indicate that the segment is not installable
Circle one: PASS / FAIL

E.6.2
Check the value of status

Type: echo $status
-1 should display and system will return a command prompt.
Circle one: PASS / FAIL

E.7
Verify the tool functionality of the warning flag option to suppress warning during tool execution

E.7.1
Run the tool with suppressing warning –w option

Type: CanInstall –w –p <space> /home1/KPC/CanInstall.tests <space>TEST_SegInfo.35.nowarn
The tool will indicate that the segment is installable no warnings.
Circle one: PASS / FAIL

E.7.1.1
Check the value of status

Type: echo $status
0 should display and system will return a command prompt.
Circle one: PASS / FAIL

E.7.2
Run the tool without suppressing warning option. Type:

CanInstall –p <space> /home1/KPC/CanInstall.tests <space>TEST_SegInfo.35.nowarn
The execution will display warning message and system will return a command prompt.
Circle one: PASS / FAIL

E.7.2.1
Check the value of status

Type: echo $status
0 should display and system will return a command prompt.
Circle one: PASS / FAIL

E.8
Verify the tool functionality of displaying errors for incompatible $CPU value

E.8.1
Run the tool on HP workstation with the test segment required running on SUN workstation. Type:

 CanInstall –p <space> /home1/KPC/CanInstall.tests <space>TEST_Seg.IIE.hwinc
“Incompatible CPU hardware errors” will be displayed.
Circle one: PASS / FAIL

E.8.1.1
Check the value of status

Type: echo $status
-1 should display and system will return a command prompt.
Circle one: PASS / FAIL

F
Run tool with Valid Segments

F.1
Run tool with COTS Segment

F.1.1
Type: CanInstall –p <space> /home1/KPC/CanInstall.tests <space>TEST_COTS_SEGMENT
No Errors, displays: “The segment can be successfully installed without error!”
Circle one: PASS / FAIL

F.1.1.1
Check the value of status.

Type: echo $status
0 should display and system will return a command prompt.
Circle one: PASS / FAIL

F.2
Run tool with Data Segment

F.2.1
Type: CanInstall –p <space> /home1/KPC/CanInstall.tests <space>TEST_DATA_SEGMENT
No errors, displays: The segment can be successfully installed without error!
Circle one: PASS / FAIL

F.2.1.1
Check the value of status.

Type: echo $status
0 should display and system will return a command prompt.
Circle one: PASS / FAIL

F.3
Run tool with Software Segment

F.3.1
Type: CanInstall –p <space> /home1/KPC/CanInstall.tests <space>TEST_SOFTWARE_SEGMENT
No errors, displays: The segment can be successfully installed without error!
Circle one: PASS / FAIL

F.3.1.1
Check the value of status.

Type: echo $status
0 should display and system will return a command prompt.
Circle one: PASS / FAIL

F.4
Run tool with Aggregate Segment

F.4.1
Type: CanInstall –p <space> /home1/KPC/CanInstall.tests <space>TEST_AGGREGATE_SEGMENT
No errors, displays: The segment can be successfully installed without error!”
Circle one: PASS / FAIL

F.4.1.1
Check the value of status.

Type: echo $status
0 should display and system will return a command prompt.
Circle one: PASS / FAIL

F.5
Run tool with COE Component Segment

F.5.1
Type: CanInstall COE
No errors, displays: The segment can be successfully installed without error!”
Circle one: PASS / FAIL

F.5.1.1
Check the value of status.

Type: echo $status
0 should display and system will return a command prompt.
Circle one: PASS / FAIL

F.6
Run tool with Patch Segment

F.6.1
Type: CanInstall –p <space> /home1/KPC/CanInstall.tests <space>TEST_PATCH_SEGMENT
No errors, displays: The segment can be successfully installed without error!”
Circle one: PASS / FAIL

F.6.1.1
Check the value of status.

Type: echo $status
0 should display and system will return a command prompt.
Circle one: PASS / FAIL

F.7
Run tool with Account Group Segment

F.7.1
Type: CanInstall –p<space> /home1/KPC/CanInstall.tests <space>TEST_ACCTGRP_SEGMENT
No errors, displays: The segment can be successfully installed without error!”
Circle one: PASS / FAIL

F.7.1.1
Check the value of status.

Type: echo $status
0 should display and system will return a command prompt.
Circle one: PASS / FAIL

G
Cleanup system after testing

G.1
Go back to the current directory

Type: cd
System will return a command prompt.
Circle one: PASS / FAIL

G.2
Delete the working directory /home1/KPC/CanInstall.tests
Type: rm –rf /home1/KPC/CanInstall.tests
System will return a command prompt.
Circle one: PASS / FAIL

G.3
Delete the testing directory /h/ALPHA
Type: rm –rf /h/ALPHA
System will return a command prompt.
Circle one: PASS / FAIL

G.4
Delete the testing directory /h/BRAVO
Type: rm –rf /h/BRAVO
System will return a command prompt.
Circle one: PASS / FAIL

Z
Logout (optional)

Not required. Use if no further validation is to be done.

Z.1
Unmount the KPC directory exported from the KPC Validation Host. Type:

umount /home1/KPC/CanInstall

Not required. Use if no further validation is to be done.
A message confirms that the file system has been dismounted.
Shutdown

Z.2
Select System > Close All

Not required. Use if no further validation is to be done.
All windows close.
Shutdown

Z.3
Select Exit button from CDE.
Logout confirmation window appears.
Shutdown

Z.4
Select Continue Logout
Not required. Use if no further validation is to be done.
System exits and the DII COE login screen appears.
Shutdown

End of CanInstall Validation Procedure

CanInstall VP

Page 1
Date: 20 January 1998
CanInstall Validation Procedure Update

Page 13 of 13
DII COE 3.3.0.0 / Rev. Date: 08 November 1999

