
Convergence Strategy for

DISA’s DII COE Security Services APIs

and

NSA’s Cryptographic APIs

[image: image1.wmf]COE SSAPI

(Vendor-Neutral high-level abstraction)

System

Security

Policy

N

 S

 S

SSL

Cryptoki

CSP

(RSA)

JL ACTD

COP

JRAMS

COMPASS

APM

COE Applications

NSS or other vendor

Binding in COE segment

Future

Capabilities

(e.g.: Access

Control Capability)

Prepared By:

 NSA INFOSEC Cryptology Office (R21)

NSA DII COE Project Management Office (T764/T842)

NSA Information System Security Policy Office (L1)

Presented To:

DII COE Security Services Technical Working Group (SSTWG)

4 March 99
1 Introduction

The sound software engineering practices of modularization and reuse has lead to the development of libraries (i.e., modules) that perform a specialized set of services. These services are developed once by experts of that specialized service. When an application developer requires the use of a specialized service, instead of having to design and develop that service, the library is included and the application just makes the proper calls to the library interface. This interface is also referred to as application programming interface (API). Examples of these specialized services include input/output (I/O), graphics, and for the purpose of this paper, security to include cryptography.

Several on-going efforts are underway within the Department of Defense (DOD) to develop a common strategy on which APIs should be used to access security services and cryptography. These efforts include NSA’s Cryptographic API (CAPI) Recommendation
, and DISA’s current Defense Information Infrastructure Common Operating Environment (DII COE) Security Service API (SSAPI).

Although DISA and NSA were working together several years ago, currently, these two efforts are not aligned. The purpose of this paper is provide a convergence strategy so that these efforts will progress in such a way that they will once again align with NSA’s and DOD’s long-term security requirements.

2 SSAPI/CAPI Timeline

The following bullets are provided to give a brief background of the on-going SSAPI/CAPI efforts.

· December 1994: The first CAPI workshop (sponsored by Trusted Information System (TIS) and National Institute of Science and Technology (NIST) that spun-off the DARPA funded International Cryptographic Experiment (ICE) project. Both NSA
 and DISA
 were participants in this event.

· June 1995: NSA publishes its first CAPI paper recommending a layered approach in order to accommodate the security requirements and programming needs of both application developers and cryptomodule developers.

· September 1995: NSA demonstrates first CAPI reference implementation (Cryptoki over FORTEZZA) at the second ICE workshop.

· March 1996: NSA briefs the third ICE workshop stating its inclusion of Microsoft’s CryptoAPI into its previous recommendation. DISA is in attendance as well
.

· July 1996: NSA updates CAPI recommendation to include CryptoAPI.

· October 1996: NSA (C4, R2, X1, X2) and DISA working group formed to define security services API and design guidance for development in DII COE.

· December 1996: NSA briefs and demonstrates its first layered CAPI reference implementation at the fourth ICE workshop. Also at the workshop, Intel briefs the Common Data Security Architecture (CDSA). At this time Netscape
 has already indicated that they would incorporate CDSA into its security services. NSA and DISA are in agreement of layering Generic Security Services / Independent Data Unit Protection (GSS/IDUP) on top of CDSA within Netscape.

· January 1997: Netscape publicly endorses CDSA at the RSA Conference. Netscape stated that they had agreed upon CDSA release 1.2 and were to make use of PKCS #11 modules underneath to supply Cryptographic Service Providers (CSPs)
.

· March 1997: Netscape publicly endorses CDSA at the quarterly Open Group Meeting
.

· April 1997: NSA/ISSO (C4, R2, X1, X2) and DISA wrap-up their CAPI strategy effort. At this time DISA agreed upon and adopted NSA’s layered CAPI strategy.

· May 1997: The COE lead left DISA. No further contact on these issues from DISA until November 1998.

· June 1997: Netscape again publicly endorses CDSA at the quarterly Open Group Meeting.

· July 1997: NSA updates CAPI recommendation to include removing the Generic Cryptographic Services API (GCS-API)
 and adding CDSA.

· October 1997: Netscape again publicly endorses CDSA at the National Information Systems Security Conference (NISSC).

· October 1997: NSA initiates IDUP-GSS-API development effort with TIS via the DARPA ICE contract.

· October 1997: NSA completes the development of the Algorithm Negotiation and Quality of Protection for the Generic Security Services / Simple Public Key Management (GSS/SPKM) reference implementation.

· December 1997: Unified Cryptologic Architecture (UCA) Technical Architecture published listing DII COE and Generic Security Services Application Program Interface (GSS-API), version 2 (RFC-2078) as standards to follow. In addition, UCA called out for CDSA specifically.

· January 1998: NSA successfully completes C Group Evaluation of the GSS/SPKM reference implementation.

· December 1997: NSA conducts performance testing on layered CAPIs.

· January 1998: NSA begins to include certificate support into the GSS/SPKM reference implementation.

· Second Quarter CY98: Netscape changes direction and decides not to endorse CDSA and severs all CDSA relationships to include ones with IBM, Motorola, and the Open Group.

· June 1998: NSA initiates Type I effort to be built to CDSA.

· July 1998: NSA initiates effort to have CygnaCom Solutions port the existing Fortezza Certificate Management Library to three CDSA plug-in modules.

· May 1998: DISA issues DOD Joint Technical Architecture Version 2.0 which includes RFC-2078, "GSS-API, Version 2.0," the Internet Engineering Task Force (IETF) Draft, "Independent Data Unit Protection Generic Security Service Application Program Interface (IDUP-GSS-API),"

· May 1998: DISA’s LTC Froede tasks MITRE to conduct a Security Services API Strategy Study for the DII COE

· June 1998: Based on MITRE’s study, DISA DII COE Chief Engineer elects to build a nonstandard interface, DII COE SSAPI

· August 1998: MITRE and SAIC deliver DII COE SSAPI version 1.0 specification.

· September 1998: At DII COE Security Services Technical Working Group NSA/T76 (UCA Implementation) representative votes in favor of the MITRE/SAIC developed SSAPI for the COE.

· September 1998: NSA/R21 briefs CAPI to UCA Security Working Group.

· November 1998: NSA/R21/X22 and NSA/T76/UCA meet with LTC Froede and others to discuss the current misalignment of CAPIs.

· November 1998: DISA offers to look again at their SSAPI decision by looking at the NSA CAPI work (software and papers).

· December 1998: NSA/R21 provides all CAPI documentation and the GSS/SPKM reference implementation to DISA for review.

· December 1998: NSA receives delivery of the IDUP-GSS-API reference implementation for S/MIME. This is demonstrated using Qualcomm Inc.’s Eudora Pro, the number one selling COTS E-mail package.

· January 1999: DISA’s DII COE Chief Engineer makes decision to continue with SSAPI instead of realigning with NSA.

· January 1999: NSA/R21 issues response to decision.

· February 1999: NSA representatives affected by this decision meet. A NSA decision to develop a convergence strategy is made, resulting in this document

3 DII COE SSAPI Strategy

3.1 DII COE SSAPI Overview

In response to an urgent requirement to enhance the security of the DII COE for currently fielded operational systems, DISA elected to develop the COE SSAPI to provide mutual authentication, data integrity, and data confidentiality protection for data exchanges between clients and servers developed in the COE. The SSAPI allows COE developers to write security-aware applications independent of the underlying COTS or GOTS security service (a “Vendor-Neutral” layer). Specific implementations of the security services, called bindings, are added as COE segments. Initial bindings to the Netscape Security Services (NSS), in both ‘C’ and Java, are being provided for COE 4.1 in October 1999.

The layered approach for the COESS is outlined in Figure 3.1-1.

[image: image4.png]
Figure 3.1-1 COE SS API Layered Approach

DISA desired a flexible API implementation that:

· Provides high-level abstraction through socket-like secure connections

· Provides applications with system security policy via a data structure maintained by the SSAPI binding:

· Consistent system security policy within a system

· Applications do not have to change with policy changes

· Provides a thin isolation layer between a security product such as NSS and COE applications for portability

The security-aware client uses the following elements and server applications to achieve secure communications without providing security enforcement mechanisms:

· Security Context: contains the state information used by the binding to create a secure connection that enforces the desired security policy

· Credential: data structures used to identify the principle on whose behalf the program is executing (e.g., NSS uses certificates)

· Secure Connection: methods provided to establish or accept secure connections in accordance with policy in security context data

· Bindings: specific implementation segments that allow applications built using the SS API to automatically use the provided COTS/GOTS security service

· COTS / GOTS Security Service: the specific security enforcement mechanism or software program. For COE 4.1, NSS will provide the COTS product that creates a Secure Socket Layer (SSL) connection between a client and a server via certificate generation and exchange. (Note: NSS assumes a DOD Public Key Infrastructure (PKI) is accessible)

3.2 COE SSAPI Strengths Cited

Through briefings and e-mails, DISA has cited several strengths in the SSAPI strategy, which led them to selecting that approach. These include:

· Implementation of SSAPI with NSS provides SSL which satisfies DISA initial security requirement

· COE SSAPI acts as an abstraction for secure connections; therefore, an application developer needs to learn one API for both security and communication
· Initial implementation with NSS requires no additional license fees since NSS is part of the DOD Netscape Enterprise License

· Significant commercial market using SSL
 technology

· NSS provides implementation that is common accross Unix and NT platforms.

· Initial implementation of COE SS API can be available for release with COE 4.1 in October 99
3.3 COE SSAPI NSA Identified Shortcomings

NSA has evaluated the COE SS API and identified several shortcomings with this strategy. These include:

· The COE SSAPI is not a standards based API.

· The COE SSAPI has not been vetted in the INFOSEC community.

· The COE SSAPI does not support access to high-grade (Type 1) cryptography.

· The COE SSAPI is strictly a GOTS solution with no commercial strategy. Therefore, in order to use any other vendor security services or cryptography, a new effort for developing the appropriate “bindings” will be required.

· The notion of vendor neutral is noble; however, the development and support of the bindings seem to be tied to MITRE and the developer of the SSAPI bindings (currently SAIC).

· A SSAPI/NSS combination does not support store and forward applications.

· NSS does not currently meet all of the DOD security requirements. These include access control services (reference SDN.801) and certificate path processing (reference SDN.706). Therefore, additional products will be required to meet these additional requirements.
· NSS does not currently perform certificate policy enforcement.
· The current use of NSS makes COE solely dependent on Netscape Communication Corporation for Security Services.
4 NSA CAPI Strategy

4.1 NSA CAPI Overview

The ultimate goal of the NSA CAPI project is to have the capability to use high-grade (i.e., Type I) cryptography in COTS products. In order to accomplish this goal cryptomodules need to be developed to a common interface (i.e., API). In parallel, application developers need to use this common interface in order to access the security services to include cryptography. The Cross-Organization CAPI team
 used the following criteria when analyzing CAPI candidates:

· algorithm and cryptomodule Independence

· application portability

· varying levels of cryptographic awareness

· safe programming

· resource sharing

· multiple data types

· authentication

· readily available

· standard and/or market share

The results of this analysis determined that not one of the CAPIs met all of the criteria as well as the needs and requirements of the two types of developers. Namely, development of cryptomodules requires a great degree of cryptographic awareness thus needs a very granular and robust interface, while applications developers only need a high-level of security awareness; therefore, an abstract interface is needed. In addition, not all applications can use security services in the same manner. For example, a session-oriented application (e.g., chat) can negotiate and establish the security to be used during the remaining session, while a store-and-forward application (e.g., e-mail) has to provide all the security information up-front so that the recipient can process the message at a later time. These findings and factors were used to develop the layered CAPI approach, illustrated below.

[image: image2.wmf]SESSION ORIENTED / STORE & FORWARD

APPLICATIONS

CDSA’s CSSM-API

GSS-API (SPKM) / IDUP-GSS-API (S/MIME)

CSSM-SPI

Cryptoki

CryptoAPI

TYPE II

CSP

(FORTEZZA)

COTS

CSP

(RSA)

TYPE II

CSP

(FORTEZZA)

COTS

CSP

(RSA)

TYPE II

CSP

(FORTEZZA)

COTS

CSP

(RSA)

TYPE I

CSP

Figure 4.1-1 Layered CAPI Approach

[image: image3.png]Figure 4.1-1 shows all the recommended CAPIs. This does not mean an application should use all five of these APIs. What is does mean is that depending on the type of application, the application developer should choose one of the following:

· Generic Security Services (GSS) API for Session Oriented Applications

· Independent Data Unit Protection (IDUP) GSS-API for Store-and-Forward Applications

Both of these high-level APIs were developed within the Common Authentication Technology working group with the Security Area of the IETF. These open standards were developed and reviewed by a wide audience of vendors and users within the commercial INFOSEC community.

Similarly when developing a cryptomodule, the developer should use one of the following low-level CAPIs:

· Microsoft’s CryptoAPI

· The Common Security Services Manager (CSSM) Service Provider Interface (SPI) within Open Group’s CDSA.

· Public Key Cryptography Standards (PKCS) #11 (i.e., Cryptoki)

There are several factors to be addressed when deciding which low-level CAPI to use for the cryptomodule. These include the target environment and the cryptomodule medium (i.e., hardware tokens or software library). Only CSSM-SPI has been vetted through an official standards group. However, PKCS #11 does conduct an open review among Cryptoki developers and corresponding workshops (when needed) to gather and develop subsequent versions. Microsoft does maintain a “listserv” service for input and questions regarding CryptoAPI, however, there is no formal process for review, input, and updates for future releases.

The results of this analysis also determined that NSA and NIST did not need to continue with their individual in-house CAPI efforts. NSA and NIST should work with industry to ensure their CAPI requirements are addressed in the specifications and supported in the subsequent products. NSA discontinued the work on the Crypto Library API and NIST discontinued their work on the proposed FIPS Cryptographic Services Calls. Both NSA and NIST worked within the Open Group on the development of CDSA as well as DISA representatives from the Center of Standards.

The crucial part currently being researched and developed is the mechanisms (also referred to as mappings or as bindings) from the high-level CAPIs to the low-level CAPIs. Since most CDSA implementations support both CSSM-SPI and Cryptoki, this gives us four possible mechanism combinations to build. During this process every design decision is made with assurance in mind subject to C group evaluation.

This strategy enables the use of two security architectures being developed within industry. The GSS/IDUP to CryptoAPI mechanisms can be used on all current Windows 95 and NT 4.0/5.0 systems. Since the release of DCE 2.2, CDSA is now available on the three major operating systems within NSA: NT, SOLARIS, and AIX. Once the two remaining components are developed according to the NSA CAPI Strategy, NSA will be posed to achieve its original CAPI goal of using Type I cryptography in COTS products. In addition, NSA will have a modular and reusable approach for applications to access security services.

Current plans for the NSA CAPI strategy include:

· GSS (SPKM) over CryptoAPI and IDUP-GSS (S/MIME) over CryptoAPI are being wrapped up and will be available to developers via the Fortezza Application Developers Web Site.

· GSS (SPKM) over CDSA and IDUP-GSS (S/MIME) over CDSA were just contracted out to Motorola as part of our High Assurance CDSA effort.

· Our high-grade (Type I) cryptography effort is using the low-level CDSA CAPI (CSSM-SPI). Coupled with the AIM chip effort.

· HW Fortezza is being developed to the CDSA CSSM-SPI.

· SW Fortezza is also being developed to the CDSA CSSM-SPI.

· CDSA will be provided to NSANet via DCE 2.2.

· Once completed, the GSS/CDSA and IDUP-GSS/CDSA will be integrated into these environments.

· In parallel, supporting security services are being built to CDSA to support certificate management, trust policy and data storage.

4.2 NSA CAPI Strengths

· The layered approach provides a logical path to support high-grade cryptography.

· Standards committees (i.e., the IETF and the Open Group) developed three of the five recommended CAPIs. The use of standards increases the potential of COTS products using these CAPIs.

· The remaining two CAPIs were developed by commercial vendors with large market share via an open process within the development community.

· The layered approach supports application developers and cryptomodule developers.

· The NSA CAPI strategy focuses on security services and does not couple security to other services and does not rely on an embedded protocol as the only means to provide security (i.e., socket communications, E-mail).

· The NSA CAPI strategy does not lock NSA/DOD into one vendor’s security architecture.

· The NSA CAPI strategy supports CDSA, which also provides support for Certificate Management, Trust Policy, Secure Data Storage and optional Key Recovery. In addition, CDSA is extensible and the Open Group is currently developing specifications for audit services and user authentication to include support for biometrics.

· Despite previous claims to the contrary
, the GSS-API and IDUP-GSS-API do not lock security policy to an application; thus, applications do not have to change when policy changes
4.3 NSA CAPI Shortcomings

DISA has identified several shortcomings in the NSA CAPI strategy including:

· The NSA CAPI Architecture requires an application to make separate calls to set up the communications channels and the encryption, which DISA perceives as a shortcoming.

· Lack of significant commercial products using GSS/SPKM (The only commercial product of GSS/SPKM is available in the Entrust security services toolkit).

· Lack of a defined CAPI implementation that is currently implementated across Unix and NT platforms. SSL is common across these platforms, but the SSAPI development is still work in progress.

5 Convergence Strategy

DISA and NSA have analyzed both of these strategies. The two strategies have commonalties and areas of difference have been discovered. Depending on the operational environment and security requirements, the use of either one of these strategies could be used to meet the overall near-term goals. Both have strengths and weaknesses, so in a team effort to move forward the following convergence is proposed:

· For current COE session-oriented applications that require the security services provided by SSL, SSAPI should be used.

· For clarity, recommend COE SSAPI be renamed to COE HLS-API (High-Level SSL-API).

· Future COE applications (both session-oriented and store-and-forward) requiring security services (including cryptography) should use either the GSS-API or IDUP-GSS-API.

· NSA shall provide DISA the reference implementations
 of GSS/SPKM over CryptoAPI and IDUP/SMIME over CryptoAPI so that they can be made available to COE applications developers via the COE website.

· NSA shall provide DISA the reference implementations
 of GSS/SPKM over CDSA and IDUP/SMIME over CDSA so that they can be made available to COE applications developers via the COE website.
· DISA and NSA need to work together to establish a process that will provide initial customer support to COE application developers to help understand / implement the standards based CAPIs
· DISA COE, NSA/UCA, and NSA/CAPI should work together to keep our CAPI convergence strategy aligned.

· DISA COE, NSA UCA, and NSA CAPI teams should work together with Netscape Communications Corporation to get their NSS product up to a level that supports DOD security requirements.

6 Modification to DII COE Security Software Requirements Specification (SRS)

The current Security SRS (Version 4.0.2 dated 20 October) has the following requirements:

3.2.11 Data Confidentiality

3.2.11.1 The COE shall provide an interface to cryptographic applications programming interfaces for use by applications to selectively encrypt and decrypt data and files.

Recommend adding the following to help clarify the above requirement:

3.2.11.1.1 The COE shall provide a vendor neutral applications programming interface (API) to establish secure socket level (SSL) connections

3.2.11.1.2 The COE shall provide a high-level Cryptographic API capability for session oriented application as defined in the Generic Security Services Application Program Interface (GSS-API), version 2 (RFC-2078)

3.2.11.1.3 The COE shall provide a high-level Cryptographic API capability for store and forward applications as defined in the Independent Data Unit Protection Generic Security Service Application Program Interface (IDUP-GSS-API)

3.2.11.1.4 The COE shall provide a low-level Cryptographic API capability as defined in the following specifications:

· Microsoft’s CryptoAPI

· Open Group’s Common Data Security Architecture (CDSA)Common Security Services Manager (CSSM) Service Provider Interface (SPI)

· PKCS #11 (i.e., Cryptoki)

SRS paragraph 3.2.19 address the requirements for Digital Signatures for the COE. Recommend the following additional requirement be added to address API’s for Digital Signatures:

3.1.19.5 The COE shall provide Cryptographic APIs for Digital Signatures using appropriate APIs defined in SRS paragraph 3.1.11.1

7 Recommendations

The recommendation of this paper is that DISA COE, NSA UCA, and NSA CAPI teams to work together to advance the CAPI convergence strategy proposed in this paper. The initial step toward this is support from the COE Security Services Technical Working Group by adding the proposed modifications to the DII COE Security Software Requirements Specification. The following steps would be to continue working together to make the initial adjustments and to maintain the CAPI Strategy alliance.

8 References

[1] NSA Cross-Organization Team, “Security Service API: Cryptographic API Recommendation,” Third Edition, National Security Agency, June 12,1995.

[2] Linn, J., “Generic Security Service Application Program Interface - version 2” RFC 2078, January 1997, ftp://ds.internic.net/rfc/rfc2078.txt.

[3] Adams, C., “Independent Data Unit Protection Generic Security Service Application Program Interface (IDUP-GSS-API),” Internet draft 7, March 28, 1997, http://ftp.ietf.org/internet-drafts/draft-ietf-cat-idup-gss-07.txt.

[4] Adams, C., “Simple Public Key GSS-API Mechanism,” RFC 2025, October 1996, ftp://ds.internic.net/rfc/rfc2025.txt.

[5] Intel Architecture Labs, “Common Security Services Manager Application Programming Interface (CSSM-API)”, Draft 2.0, June 16, 1997.

[6] Intel Architecture Labs, “Common Data Security Architecture (CDSA)”, Draft 2.0, June 16, 1997.

[7] Microsoft Corporation, “Application Programmer’s Guide: Microsoft CryptoAPI, Version 1.0, January 1996.

[8] Kaliski, B., “Cryptoki: A Cryptographic Token Interface, Version 1.0.” RSA Laboratories, April 28, 1995.

[9] MITRE / SAIC, “Security Services Applications Programming Interface for the Common Operating Environment 4.0”, Version 1.0, 15 August 1998.

[10] MITRE, “DII COE Security Software Requirements Specifications (SRS)”, Version 4.0.2, 20 October 1998.

Figure 4.1-2: CAPI Combinations

IDUP-GSS

Over

CDSA

GSS

Over

CryptoAPI

IDUP-GSS

Over

CryptoAPI

GSS

Over

CDSA

� EMBED MSPhotoEd.3 ���

CryptoAPI

� NSA’s CAPI recommendation was developed in conjunction with the DARPA funded International Cryptography Experiment (ICE).

� NSA representatives included: Paul Pittelli, David Miller, and Amy Reiss.

� DISA representative was Bill Smith of DISA’s Center for Standards.

� DISA/JIEO/JEXG representative was Joe Sirrianni of the System Security Engineering Department.

� It is important to note that DISA’s strategy is tightly coupled to Netscape, since it has negotiated an enterprise license agreement for Netscape to be on all DOD desktops.

� Per Eric Greenberg, Security Product Manager for Netscape.

� Per Taher ElGamel, Head Crypto Mathematician for Netscape.

� The Generic Cryptographic Services API was deprecated by the Open Group and replaced with CDSA.

� NOTE: There may be additional fees depending on the algorithm suite that will be used.

� NOTE: SSL is a transport layer security protocol, not a CAPI nor a CSP.

� NIST was also an active participant in this effort.

� It was previously stated that GSS-API hard-codes policy in the application. This is not true.

� The development of GSS/SPKM is analogous to the proposed development of the SSAPI bindings. GSS/SPKM is not equivalent to commercial SSL products. It should also be noted that the SSAPI/SSL does not provide the depth of security services that CDSA provides.

� Estimated to be completed by 3Q FY99.

� These were just contracted out. Rough estimate of completion by 3Q FY00.

PAGE
3

_981957134.bin

_982047126.ppt

CDSA’s CSSM-API

TYPE II

CSP

(FORTEZZA)

COTS

CSP

(RSA)

COTS

CSP

(RSA)

TYPE II

CSP

(FORTEZZA)

COTS

CSP

(RSA)

SESSION ORIENTED / STORE & FORWARD

APPLICATIONS

GSS-API (SPKM) / IDUP-GSS-API (S/MIME)

CSSM-SPI

Cryptoki

CryptoAPI

TYPE II

CSP

(FORTEZZA)

TYPE I

CSP

_981543926.ppt

