Addendum XXX to DAC Enterprise Directive 002 – Web-Enabling Systems for the C2 Enterprise [perhaps cast this as a “DAC Enterprise Instruction” implementing DAC-002]

This paper provides implementation guidance for data transfers in AF Information Technology and National Security Systems within the C2 enterprise using the Extensible Markup Language (XML).

0. Terms of reference

In this paper the term “program” refers to System Program Offices (SPOs) and their contractors. An “XML document” is a data object that is “well-formed” according to the rules of the XML specification.
1. What is the Extensible Markup Language (XML)?

In common usage, XML denotes both a specific standard and a family of standards. The XML standard is a language for defining data formats that are easy for software applications to generate and process. These data formats can also capture hints that make the data easier for people to understand. XML is therefore very useful for supplying data to people and machines across the web. The XML family of standards are aimed at making it easy for distributed applications to discover, obtain, and manipulate data – typically in XML format – across the web.

One key aspect of XML is that it permits separation of presentation from content; that is, separating the details of how information is to be arranged and displayed to people from the details of what information is to be conveyed. A single XML document may be presented differently to many people with different preferences and needs. The same document may be used for an application-level, machine-to-machine data exchange.

It is not the purpose of this paper to explain every important point about XML. Refer to “World Wide Web Consortium (W3C)” listed in the Resources section for official definitions and background information on these standards.

2. When must programs use XML to comply with the DAC Directive?

All information exchanged across program boundaries must be available in XML format. That is, programs must define and implement an XML version of each external interface in their system. An XML interface accepts input data, produces output data, or both, encoding this data in XML documents. An XML interface is defined by specifying the syntax of the XML documents it accepts and produces, and by providing documentation that allows programmers and users to understand the meaning of those documents. An XML interface is implemented by a runtime service that actually accepts and produces such documents.

Summary: if your system makes data available to external partners, that data must be available in the form of an XML document. If your system accepts data from external partners, it must be able to accept that data in the form of an XML document. This is required even if none of your current known partners want XML data or send XML data. You are free to implement other external data exchange mechanisms so long as an XML interface is also supported.

Programs are encouraged but not required to define and implement XML interfaces for internal use. Programs are likewise encouraged to use XML for the data they present to their own directly-supported users.

The principles in this section apply to most data and almost all programs. Exceptions are discussed later in this paper.

3. Defining an XML interface

Every interface has two sides. Question: who defines an interface, and who uses the definition provided by another? The guiding principle is that the information producer defines the data representation, and information consumers use those definitions. However, the provider of a web service may define the documents that comprise the input parameters of that service, even though those documents are technically produced by the service partner. Cooperation and collaboration over XML data definitions is highly desirable – especially when there are many producers and consumers of related information.

Here are specific requirements and guidance for programs that are defining an XML interface:

3.1 Programs that define an XML interface must specify the syntax of the XML documents it accepts and produces. Programs must use the XML Schema standard to express these specifications. Refer to “XML Schema Best Practices” listed in the Resources section for guidance on creating XML schemas. Refer to “COE Data Emporium” for guidance in choosing element, attribute, and type identifiers. Refer to “Aerospace Operations Naming Conventions” for guidance in choosing namespace identifiers.

3.2 Programs that define an XML interface must also provide adequate documentation for the meaning of the documents it produces or accepts. An adequate definition is one that enables a programmer or user to understand the meaning of the data and determine whether it is suitable for his intended use. This documentation is to be expressed as annotations on the XML schema for the interface. Programs must supply a text definition for every element, attribute, and enumeration value defined in the schema. Refer to the XML Schema specification (available at the W3C site listed in the Resources section) for more information on schema annotations. Consider the following schema fragment as an example:

<simpleType name=”CON_ACCESS”>

 <annotation>

 <documentation>Indicates the access restrictions and/or the

 condition of the approach to the entity. Restrictions may be

 natural or seasonal, such as ICE blocked ports, or may be man

 made such as fences and guards.</documentation>

 </annotation>

...

</simpleType>

3.3 Programs must publish the XML schema for every external XML interface they define. This is accomplished by entering the schema in the COE XML Registry. This should be done as early as possible in the development process. Refer to the “COE Data Emporium” listed in the Resources section for guidance on the registration process.

3.4 Programs must search the COE XML Registry for existing definitions that can be reused in the interfaces they define. When existing definitions are reused, this fact must be recorded in the COE XML Registry according to the procedures given in the “COE Data Emporium” resource.

3.5 Programs should look for government and industry consortia that produce XML definitions. Some of these may be suitable for reuse in the interfaces the program defines.

3.6 Programs that use an XML interface defined by some other program must record this fact in the COE XML Registry.

3.7 Programs must not unilaterally define XML schemas for information that they do not produce. For example, if your program is not an authoritative source of the Air Tasking Order, then your program must not create and register XML definitions for the information in the Air Tasking Order.

3.8 Programs are strongly encouraged to define XML interfaces in collaboration with their known information exchange partners. Pairwise collaboration is only a little better than unilateral definitions. Refer to the “Community of Interest” paper in the Resources section for the principles of determining the best size and scope of a collaboration group.

4. Implementing an XML interface

This section contains guidance for programs that are implementing an XML interface:

4.1 Programs that produce XML documents must guarantee that the XML documents are valid according to the XML schema they have published in the XML Registry. Programs that receive XML documents should validate them against the schemas published by external parties.

4.2 Programs must implement one version of each XML interface that is accessible through a URL using HTTP. Programs may implement other versions of the interface using other transport mechanisms (e.g. FTP, SMTP) so long as the HTTP version is also supported.

4.3 Programs should examine the developing XML-related standards for web services: XML Protocol, UDDI, WSDL, etc. These standards will soon become finished recommendations. They are not yet ready for directed compliance, but they are appropriate to consider in a program’s development plan.

5. Exceptions

5.1 Information that is customarily exchanged using a well-known open standard format does not have to be made available in XML. For example, programs may transfer image data in JPEG format, email messages may continue to use RFC822 headers, etc. There is no requirement to develop an equivalent XML interface for these. A list of the exception formats will be made available over time.

5.2 Information that can only be expressed using closed proprietary formats does not have to be made available in XML. In these cases it is impossible for programs to comply with sections 3 and 4. For example, programs may continue to exchange word processor files in Microsoft Word (DOC format). There is no requirement to develop an equivalent XML interface for this information. Note that the use of closed formats is contrary to the spirit of “web-enablement” and the DED-002 directive, and should be avoided in all but the small minority of cases where the benefits outweigh the interoperability costs.

5.3 Information intended for presentation that is currently held in SGML format does not have to be immediately converted into XML. However, programs should consider migrating such information from SGML to XML over time.

6. Resources

· COE Data Emporium

diides.ncr.disa.mil/shade

· COE XML Registry

diides.ncr.disa.mil/xmlreg/

· PEO Interchange XML Initiative (PIXIT)
pixit.mitre.org

· XML Schema Best Practices

www.xfront.org

· World Wide Web Consortium (W3C)

www.w3c.org

· “A Community of Interest Approach to Data Interoperability”

· “XML Schema Namespace Management – Aerospace Operations Naming Convention”

7. Acronyms

COE
Common Operating Environment

FTP
File Transfer Protocol

HTTP
Hyper-Text Transfer Protocol

JPEG
Joint Photographic Experts Group

SMTP
Simple Mail Transfer Protocol

SPO
System Program Office

UDDI
Universal Description Discovery and Integration

URL
Uniform Resource Locator

W3C
World Wide Web Consortium

WSDL
Web Service Definition Language

XML
Extensible Markup Language

