Rev 1.3

SRS for RT Extensions to Integration Tools of the DII COE

Software Requirements Specification

for

Real-time Extensions to the

Integration Tools

of the

Defense Information Infrastructure

Common Operating Environment

(RT DII COE)

19 January 2001

Release Rev 1.3
DII COE Real-time Technical Working Group

RECORD OF CHANGES
	Revision Number
	Date
	Brief Description of Changes
	Comments

	1.0
	30 April 1999
	Baseline version approved by DII COE RT TWG on 22 April 1999
	Release for DISA to start developing RT extensions for DII COE 5.0 beta release

	1.1
	
	· Pickups and minor corrections to original text.

· Removed implementation detail from requirements to build a dependency database.

· Removed reference to concept of DII COE services as distinct from segments.

· Moved use cases to Appendix B as historical record that may be more easily updated independently.

· Made changes for DISA’s closure of terminology issues.

· Duplicate requirement [R41] removed.
	

	1.2
	31 October 2000
	· Allocated some existing verification requirements to VerifySeg

· Updated for extended toolkit segment and runtime segment terminology
	

	1.3
	19 January 2001
	· Removed specification of the number of tools and tool names. (Functional requirements were not changed.)

· Removed the distinction between POSIX Units of Functionality and POSIX Options in accordance with the I&RTS Interim Guidance.
	

table of contents

Page

11
Introduction

1.1
Identification
1
1.2
Purpose
1
1.3
Scope
1
1.4
Document Overview
2
1.5
Terms and Definitions
2
2
Applicable and Related Documents
5
2.1
Internal Real-time DII COE Requirements Documents
5
2.2
External Requirements Documents
7
3
Overview of RT Integration Activities
8
4
Summary of Requirements
13
4.1
General Requirements for Integration Tools
13
4.2
Installation Tools
14
4.2.1
RT Kernel & Build Tool Installer
14
4.2.2
RT COE Segment Installer
15
4.2.2.1
Location and Structure of Segment Directories
15
4.2.2.2
Options for selecting segments
Error! Bookmark not defined.
4.2.2.3
Atomic installation of segments
16
4.2.2.4
Building dependency database
16
4.2.2.5
Audit trail
16
4.3
Configuration Analysis Tools
17
4.3.1
General Requirements for Configuration Analysis Tools
17
4.3.1.1
RT COE Segment Selector
18
4.3.1.2
RT Kernel Services Selector [requirement deleted]
20
4.3.1.3
RTOS Functionality Selector
20
4.3.2
RTConfig File: Build Directions
22
Appendix A General Notes on Use Cases
28
Appendix B Integration Tools Use Cases
30
B1
Integration Environment Installation
31
B1.1
Install RT Kernel and Integration Tools
33
B1.1.1
Use Case Description
33
B1.1.2
Scenarios
35
B1.1.2.1
Initial Installation of RT Kernel and Integration Tools
35
B1.1.2.2
Prior Version of RT Kernel Installed On Integration Environment
36
B1.2
Install Requested RT Segments
37
B1.2.1
Use Case Description
37
B1.2.2
Scenarios
39
B1.2.2.1
Segment Successfully Installed On Integration System
39
B1.2.2.2
RT Segment Exists On Integration System
40
B2
Configure RT Kernel
42
B2.1
Select [RT] Segments
46
B2.1.1
Use Case Description
46
B2.1.2
Scenarios
48
B2.1.2.1
User Provides List of Segments
48
B2.1.2.2
Invalid Segment Entry
48
B2.2
Select Kernel Services
49
B2.3
Select RTOS Functionality
49
B2.3.1
Use Case Description
49
B2.3.2
Scenarios
51
B2.3.2.1
User Provides Valid List of Segments & Kernel Services
51
B2.3.2.2
Invalid Entry in List of Segments & Kernel Services
52

List of Tables

Table
Page

Table 1-1
Acronyms and Terms
2
Table 2-1
Real-time DII COE Internal Document Tree
6
Table 4‑1
RTConfig File Contents
22
Table 4‑2
RTConfig File Format
24

 REF Tab42 \h

 REF Tab42 \h

Table B-1
Common Assumptions and Participants
32
List of figures

figure
Page

5Figure 2-1. Real-time DII COE Internal Document Tree

Figure 3‑1. RT System Integration Activities
10
Figure 3‑2. Integration Activities Context
11
Figure 3‑3.
Integration Activities Data Flow
11
Figure B‑1.
Installation of RT COE
31

 REF FigB1 \h

 REF Fig51 \h

Figure B‑2.
Configuring the RT Kernel
43

 REF FigB2 \h

Figure B‑3.
RT Kernel Integration Activities
44

 REF FigB3 \h

1 Introduction

1.1 Identification

This document is the software requirements specification for real-time extensions to the Integration Tools of the Defense Information Infrastructure (DII) Common Operating Environment (COE).

1.2 Purpose

The purpose of this document is to define the requirements for software tools that support the configuration of the Defense Information Infrastructure (DII) Common Operating Environment (COE) Real-time (RT) Kernel and the development of a loadable image for use in DII COE-compliant RT systems.

1.3 Scope

The scope of the requirements in this document address the tools required to install the DII COE RT Kernel, COE segments, and mission application segments as well as integration tools on a system integrator's integration environment. The document also contains requirements for DII COE tools that aid the integrator in selecting and configuring the COE RT extended toolkit segments, the COE RT Kernel, and the supporting RTOS. Tools required to generate a "loadable" image on electronic media for target real-time systems are assumed to be specific to the OS vendor and are not covered in this document. Tools that are used by a developer to generate a COE RT extended toolkit are described in the Software Requirement Specification for Real-time Extensions to DII COE Segment Development Tools.

1.4 Document Overview

This document contains both an explicit statement of the requirements for the Integration Tools and the rationale driving the derivation of these requirements. Section 2 presents an overview of the Integration activities and places them in the context of the total development cycle. Section 3 contains reference information that may be useful to the reader, including definition of terms and a bibliography of related documents. Section 4 lists the specific requirements for the Integration Tools. Appendix A provides general information on the construction and interpretation of use cases. The rationale for the requirements identified in this document is presented as a series of use cases and related scenarios in Appendix B.. This section contains cross references from steps of the use cases to the requirements of Section 4 that were derived from the use case analysis. The use cases are included to elaborate the context from which the requirements were generated.

1.5 Terms and Definitions

Table 1-1 describes terms used throughout this document.

Table 1-1. Acronyms and Terms

	Term
	Definition

	API
	Application Programmer Interface. Provides a programmer's guide that describes the data structures, function calls, and functionality provided by a software component and how to write software modules that interface and use those services. The definition of an API is programming-language neutral may include traditional function (C/C++) or procedure (Ada) interfaces as well as command-line interfaces. Data structures are included in the definition as are the definitions of objects for services that are written in an object-oriented model. Fundamentally, an API is a contract between the application developers and the RT Kernel Services developers specifying what each API will do and how each API should be used.

	COE
	Common Operating Environment. A collection of standards, specifications, guidelines, architecture definition, software infrastructure, reusable components, API's, methodology, runtime environment definition, reference implementation, and methodology that establishes an environment on which a system can be built. The COE allows segments created by separate developers to function together as an integrated system by assuring interoperability through a reference implementation that provides identical implementation of common functions. The COE is both a standard and an actual product (e.g., reference implementation) composed of reusable software components built according to a set of open standards and specifications.

	COE Segment
	A segment that is contained within the COE. All software in COE-based systems is packaged as segment(s), including those within the COE itself. COE segments are configuration controlled and distributed by a DII COE software provider and are specific to an operating system and hardware platform.

	Configuration Analysis Tools
	The set of tools which the system integrator uses to select extended toolkits for configuration, expand that list of components based on DII COE dependencies, and build a detailed description of the software that must be configured to produce a DII COE-compliant real-time system. These tools include the RT COE Segment Selector, and RTOS Functionality Selector.

	COTS (software)
	Commercial Off-The-Shelf Software. Software that is commercially available (e.g., versions of UNIX, X Windows, or Motif).

	Developer's Tools
	Support tools and applications used by segment and extended toolkit developers to assist them in the development, test, and integration of DII COE compliant software.

	DII COE
	Defense Information Infrastructure Common Operating Environment

	DII COE Extended Toolkit Segment
	A segment that contains documentation, linkable or shared libraries, data, and other items required for use in an integration, development, and/or runtime environment. Extended toolkits may also contain executables that will be used in a runtime environment. The term “extended toolkit” supercedes the term “software development kit” used in prior DII COE releases.

	DII COE Runtime Segment
	A segment that has been stripped of extraneous files and directories that are not required for a runtime target system. A runtime segment is a subset of an extended toolkit. It uses the same segment descriptors as the extended toolkit.

	GOTS (software)
	Government Off-The-Shelf Software. Software developed through funding by the US Government and available for use on by system integrators on their systems.

	GSKS
	Government Supplied Kernel Software (government developed and maintained software within the DII COE Kernel)

	GUI
	Graphical user interface

	Integration
	The process of combining components into a new, larger component to achieve some architectural requirement.

	Integration Environment
	Software environment used by developers to configure, integrate, and test software. It can include compilers, editors, linkers, debug software, segmentation support tools, and configuration management support. It is distinct and separate from the targeted RT run-time environment.

	Integration Tools
	Software support applications used to assist the RT system integrator in assembling and configuring RT components into systems. These tools are specific to the integration environment.

	Kernel Services
	Selectable services available for use by all RT COE and mission application segments. Kernel Services are provided by DISA as DII COE extended toolkits.

	Mission Applications
	Mission unique application programs. A segment or extended toolkit that uses the services of the COE to provide functionality that is specific to a mission domain. Mission-application segments/toolkits are external to the COE and are built on top of the COE per the DII COE Integration and Run Time Specification (I&RTS) to create a new capability.

	POSIX.13
	Shorthand for the POSIX Realtime Application Support (AEP), IEEE Std.1003.13-1998.

	RT
	Real-time

	RT Kernel
	DII COE Kernel for real-time consisting of RT Kernel Services and an underlying RTOS.

	RTOS
	Real Time Operating System. Operating system developed to meet deterministic and system performance requirements. Commercial examples include LynxOS, VxWorks, and RTEMS.

	RT System Integrator
	Individual responsible for the development and integration of RT systems that utilize portions of the COE and program unique mission applications. Also responsible for the installation of the DII COE RT software and tools onto an appropriate integration environment.

	Segment
	A collection of one or more software and/or data units most conveniently managed as a unit of functionality. Segments are generally defined to keep related units together so that functionality may be easily included or excluded. They are usually defined as functional pieces (e.g., a word processor) that make sense from a system administrator or system integrator perspective because segments are the lowest level components above the configurable kernel that can be included in, or excluded from, a target system. Segments contain “self-describing” information that is used by automated tools to detect and avoid potential conflicts with other segments. In the present DII COE, this information is contained in the segment’s SegDescrip directory.

	Segment Descriptors
	A collection of ASCII files containing information that describes attributes of the segment or extended toolkit.

	Toolkit
	Abbreviated form for extended toolkit throughout this document unless otherwise stated.

	UoF
	Unit of Functionality. Refers to POSIX unit of functionality as defined in POSIX.13 and the Kernel Services SRS. Each UoF is a collection of APIs which, as a unit, provide a significant and cohesive capability in a POSIX-conformant operating system. The names of the Units of Functionality are specified in Tables B-3 and B-4 of the Kernel Services SRS.

2 Applicable and Related Documents

Applicable and related documents include those that are

· internal (managed by the Real-time Technical Working Group and the Real-time Integrated Product Team),

· external (managed by DoD services or agencies, formal standards bodies, etc.), and

· other published documents (e.g., white papers, DoD policy letters, etc.).

2.1 Internal Real-time DII COE Requirements Documents

All internal documents are represented in the drawing tree in Figure 2-1 and are specifically identified in Table 2-1 below.

Figure 2-1. DII COE Real-time Extensions:
 Internal Document Tree

Table 2-1. DII COE Real-Time Extensions:
Internal Document Tree

	Document Title
	Authorship Responsibility

	Technical Requirements for RT DII COE
	DII COE Real-time Technical Working Group (RT TWG)

	Software Requirements Specification for Real-time Kernel Services for the Defense Information Infrastructure Common Operating Environment with Real-time Extensions (RT DII COE)
(Kernel Services SRS)
	DII COE Real-time Technical Working Group (RT TWG)

	Software Requirements Specification for Real-time Extensions to DII COE Segment and Extended Toolkit Development Tools
(Segment Development Tools SRS)
	DII COE Real-time Technical Working Group (RT TWG)

	Software Requirements Specification for Real-time Extensions to DII COE Integration Tools
(Integration Tools SRS)
	DII COE Real-time Technical Working Group (RT TWG)

The documents shown/listed in the above figure and table are briefly described below. Specific version numbers are intentionally omitted. The latest baseline version of these documents will be available via one or both of the respective Web sites for the RT TWG and RT IPT.

Technical Requirements for RT DII COE (TRD):

The TRD, shown in figure 2-1 in a dashed box to indicate it does not yet exist, is a "place holder" in the RT DII COE document tree. The RT TWG has assumed responsibility for producing this document, but has not yet begun work on it. The TRD, if and when it is produced, will specify system level real-time requirements for the DII COE, and the individual SRS documents will be subordinate to the TRD.

Kernel Services SRS:

The Software Requirements Specification for Kernel Services for the Defense Information Infrastructure Common Operating Environment with Real-time Extensions (RT DII COE) (Kernel Services SRS) defines requirements for the real-time kernel for the DII COE, including requirements for selectable runtime kernel services. It also specifies POSIX Units of Functionality identifiers adopted from POSIX.13 that are used in the process of configuring a DII COE -compliant RT system.

Segment Development Tools SRS:

The Software Requirements Specification for Real-time Extensions to DII COE Segment and Extended Toolkit Development Tools defines requirements for new tools and extensions to existing tools for creating segments that support development of RT systems using the DII COE, and describes the (extended) process for creating real-time segments for the DII COE.

Integration Tools SRS:

The Software Requirements Specification for Real-Time Extensions to DII COE Integration Tools defines requirements for software tools that support configuring the DII COE real-time kernel and building a loadable image for use in DII COE compliant RT systems (target systems).

2.2 External Requirements Documents

· Defense Information Infrastructure Common Operating Environment Integration and Runtime Specification, (I&RTS) version 4.0, October 1999.

· Information Technology – Portable Operating System Interface (POSIX) Part 1 – System Application Program Interface (API) [C Language], ISO/IEC 9945-1:1996 (E) ANSI/IEEE Std. 1003.1.

· Standard for Information Technology – Standard Application Environment Profile – POSIX Realtime Application Support (AEP), IEEE Std.1003.13-1998.
3 Overview of RT Integration Activities

Figure 3‑1 illustrates the overall activities associated with the integration of a RT system utilizing DII COE RT extended toolkits. The highlighted "Integration Activities" boxes identify the specific functional areas to be addressed by this document. Figures 3-2 and Figure 3-3 provide a data flow view of the major functional requirements of the Integration Tools. Detailed functional requirements are provided in Section 4. The use cases through which these requirements were derived are described in REF AppB \h
Appendix B.

A loadable image for a RT system based on the RT COE consists of the following components:

· RT Operating System configured for the RT system;

· COE RT Kernel configured for the RT system;

· COE extended toolkits required to support the RT system; and

· Mission Application extended toolkits.

The system integrator configures the real-time operating system (RTOS) during integration using tools provided by the RTOS vendor. The suite of tools available to accomplish this task will vary from RTOS to RTOS. In some cases, manual configuration of the RTOS may be required. The RTOS is acquired directly from the RTOS vendor and is not configuration managed or distributed as a DII COE configuration item.

The DII COE RT Kernel is configured to meet the needs of the DII COE compliant system that it must support. The RT Kernel consists of a set of selectable RT Kernel Services that provide functions useful to a wide range of RT systems. The RT Kernel provides the equivalent of a "software back plane" for the COE compliant RT components. It is not necessary that every RT system either supports or requires every RT Kernel Service, so the system integrator must have the ability to select only those RT Kernel Services needed. The system integrator must request the RTOS-specific RT Kernel from the appropriate DII COE product distributor. The services of the RT Kernel are packaged as DII COE extended toolkits that are suitable for installation on the system integration environment. All of the information required for use in RT target environments, as identified in the Segment Development Tools SRS, is supplied with each kernel service.

The system integrator also identifies those COE and mission application segments that will meet the requirements of the program and orders the required COE segments
 from the DII COE product distributor. On receipt of the distribution media, the integrator loads them onto the system integration environment.

[image: image1.wmf]Create

RT Application

 Ext. Toolkit(s)

Complie, Link &

VerifySeg

RT Application

Ext. Toolkit(s)

Debug

RT Application

Ext. Toolkit(s)

Determine Req'd

RT Kernel

Configuration

Based on Selected

RT Capabilitiess

Identify &

Request RT

Platform

Specific

RT Segments &

Kernel

RT System

Requirments

Segment/Ext. Toolkit Development

Activities Requiring DII COE Integration Tools

Design

RT Application

Ext. Toolkit

Request

Integration

Environment

Specific

Integration

Tools

Identify

RTOS & Tools

Install

RTOS & Tools

Install RT Ext. Toolkits,

Kernel, & Integration Tools

Determine RTOS

Configuration &

Create Build

Directions

Purchase

RTOS &

Development

Tools From

Vendors

Integration Environment

text

Install in Target

RT environment

Target

Environment

Integrate

RT Appl. Ext. Toolkit(s)

+ Configured RTOS +

Configured RT kernel +

 COE RT Ext. Toolkit(s)

Integration

Build Installable Image

Build

Directions

RTOS

Complete &

Tested RT

Mission Appl

Ext. Toolkits

Configure

RTOS

Select COE

Capabilities and

Mission

Applications that

must be supported

Configured

RTOS

DII COE Ext. Toolkits

& RT Kernel

Figure 3‑1. RT System Integration Activities

[image: image2.wmf]Integration

Activities

DII COE

Product

Distributor

System

Integrators

Mission Appl

Extended Toolkit

Segments

RT Kernel

Services

Integration Tools

Build Directions for

Configuring RTOS &

RT kernel services

 Requested

Extended Toolkit

Segments

Installation

Failure

Figure 3‑2. Integration Activities Context

[image: image3.wmf]Configure

RT Kernel

Installed RT Kernel

Installed Extended

Toolkits

Install

 RT Kernel

& Int.

Tools

RT Kernel Services

Install

Requested

RT

Extended

Toolkits

 Requested

Extended

Toolkits

Build Directions for

Configuring RTOS

& Required

RT kernel services

Segment

Dependencies

RT Kernel

Dependencies

Integration Environment

Configuration

Installation

Failure

Installation

Failure

Integration Tools

Mission Appl

 Extended Toolkits

Figure 3‑3.
Integration Activities Data Flow

The system integrator must also request and install COE Integration Tools that are used to generate instructions for the configuration of the RT Kernel and COE RT extended toolkits.

The Integration Tools are software programs that support the installation and configuration of a RT Kernel based on the needs of the executable images and object libraries, as made available in DII COE extended toolkits, to be integrated in the integration environment and executed on the target platform. Integration environment utilities are used to install the integration tools, the RT Kernel, and COE RT toolkits for later integration into executables that will run in the target RT environment. The integration tools are used to create "build directions" that provide the following information to the integrator:

· Minimum RT Kernel Services required based on the RT software to be integrated;

· Minimum functionality required of the underlying RTOS; and

· Specific requirements the selected software components place on the runtime environment . These requirements are generated from resource information contained in the segment descriptors.

The Integration Tools do not integrate the RT Kernel and/or RT software delivered with the toolkits. Rather, they provide the RT system integrator with a list of the required program binaries that must be combined to produce the executables needed in the target environment. Configuration Analysis Tools provide a mechanism through which the integrator can describe the functional capability required in the target system through selecting RT Kernel Services as well as other linkable libraries and executables from toolkits to be integrated. After analyzing dependencies of selected components on other components and Kernel Services, these tools produce a list of items that must be configured for the target system. The system integrator uses native integration environment utilities to configure and build the minimum required RT Kernel and RTOS to support the specified RT capabilities.

Once the RT Kernel and RTOS are configured, the system integrator then combines the previously installed COE and mission application components from the toolkits to generate a loadable image for the target platform. This step is accomplished using RTOS vendor and/or utilities of the integration environment.

The loadable image is then installed on the target platform.

4 Summary of Requirements

This section summarizes requirements derived through review and analysis of the use cases. Note that references to specific tools and tool names are intended as an aid in clearly stating functional requirements and are not intended to constrain the implementation of these requirements. An implementation which satisfies these requirements is permitted to combine two or more tools referenced in the requirements into a single tool where it makes sense to do so.

4.1 General Requirements for Integration Tools

The requirements of this section apply generally to all tools identified in this document.

[R1] The tools shall execute in the integration environments most commonly used for development of real-time systems. As a minimum, these environments shall include Solaris, WindowsNT and HP-UX development environments.

[R2] All tools shall support a command line interface that will allow execution in an integration environment that does not support a GUI.

[R3] Each tool shall support activation via a command line.

[R4] Each tool shall provide the same capabilities regardless of whether invoked via a command line or GUI interface.

[R87]
The tools shall provide the ability to exercise the full functional capability of the tools solely from command scripts executed from the operating system command line, without using the GUI.

[R5] The tool shall provide an interactive user interface that allows the tool to request user inputs.

[R6] When input to a tool takes the form of a list, the tool shall provide an option to read the list from a text file as an alternative to user input through an interactive interface.

[R7] When input to a tool takes the form of a list, the tool shall allow explanatory comments to be inserted within the list. A "#" shall precede each line of the comment (i.e., the same syntax as defined in the DII COE I&RTS).

[R8] Any tools that are accessed by command line shall accept, where meaningful, the following command line parameters and process them as indicated:

-C file
Read command line parameters from file

-h, H
Display on-line help describing how to use the tools

-p path
Use path to establish the path for subsequent file names.
-R file
Use file to respond to questions from the tool

-v
Toggle the “verbose” flag. When enabled, print out diagnostic information as the tool executes. The default state of the flag is disabled.

-V
Display the tool’s version number.

-w
Toggle the “warnings” flag. When enabled, print out warning messages as the tools execute. The default state of the flag is enabled.

4.2 Installation Tools

The installation tools are used to extract from distribution media and verify the proper installation of the RT Kernel, Integration Tools, and COE and mission applicationextended toolkits onto a system integrator's integration environment. The tools should be based on the functionality of the current DII COE segment installation tools. The following subparagraphs identify specific functional requirements associated with the installation tools.

4.2.1 RT Kernel & Build Tool Installer

This tool is used to install the DII COE RT Kernel (excluding the RTOS) and Integration Tools onto the system integrator's integration environment. If an error is detected, it is displayed to the (human) installer and recorded in a log. The installer is offered the option to continue the installation process after a dependency failure, if continuation is feasible. A log of dependency failures is kept to allow the installer to investigate the failures.

The tools discussed in this document assume that each RT Kernel Servicehas been packaged in a form that includes a description of its dependencies on other Kernel Services and on POSIX.13 units of functionality. In other words, each Kernel Service is delivered with the format and content of a DII COE extended toolkit.

[R9] The tool shall provide a means for the user to specify a file directory path name as the base directory relative to which the Kernel installer is to be installed.

[R10] The tool shall provide a means for the user to specify a file directory path name as the base directory relative to which the RT Kernel is to be installed.

[R11] The tool shall provide a means for the user to specify a file directory path name as the base directory relative to which the Integration Tools are to be installed.

[R12] The tool shall report all failure conditions encountered to the user.

[R13] If the tool encounters an existing version of a file that is to be installed, the user shall be advised to terminate the installation, clean up the directory, and repeat the installation process.

[R14] If the installation terminates without failure, success shall be reported to the user.

4.2.2 RT COE Toolkit Installer

This tool installs the COE toolkits onto the system integrator's integration environment (not the targeted RT environment!). The tool performs dependency checks to make sure that required components are available on the integration environment. If a required component is missing, the error is displayed to the (human) installer and recorded in a log. The system integrator is offered the option to continue the installation process after a dependency failure, if continuation is feasible. A log of dependency failures is kept to allow the installer to investigate the failures.

4.2.2.1 Location and Structure of Segment Directories

The user must be able to designate where the DII COE directory structure will be built within the integration environment. The toolkit is expected to be packaged as defined in the I&RTS.

[R15] The tool shall provide a means for the user to specify a file directory path name as the base directory relative to which a toolkit is to be installed.

[R16] The tool shall install each toolkit relative to a base directory.

[R17] The tool shall create a DII COE segment directory structure, as dictated by the I&RTS, relative to this base directory.

[R18] The tool shall accommodate the installation of multiple releases of the DII COE on a single integration environment. It shall be allowable to install multiple historical releases (e.g., DII COE 5.0, 5.1, and 5.2) as well as releases targeted to different execution environments (e.g., LynxOS and Solaris) on a single integration environment.

[R19] Before installing toolkits from the distribution media into the toolkit directories, the tool shall verify that the toolkits on the distribution media are compatible with the DII COE release into which they are being installed.

4.2.2.2 Options for selecting toolkits from the distribution media

The user should have the option of installing all of the toolkits provided on the distribution media or installing them selectively:

[R20] The toolkit installation tool shall offer the integrator the option to load all toolkits on the distribution media or to load toolkits selectively.

[R21] A method of listing the toolkits on the distribution media shall be available to aid the integrator in selection.

[R22] When installation of a selected toolkit or toolkits has been completed, the user shall be offered options to select additional toolkits for installation or to terminate the process of installation.

4.2.2.3 Atomic installation of toolkits

When a toolkit is installed, the installation must be all or nothing. If the directory structure into which this toolkit is to be installed has already been populated, either in part or in full, the user must decide whether or not to overwrite the existing toolkit files.

[R23] The tool shall determine whether a version of the toolkit to be installed already exists in the destination directories on the integration environment.

[R24] If another version is present, the integrator shall be given the choice of retaining the version currently installed or replacing it with the newly distributed toolkit.

[R25] The tool shall determine that the distribution media contains toolkits compatible with the COE release and target platform into which the toolkit is being installed.

4.2.2.4 Building dependency database

A database of dependency information shall be built to facilitate dependency analysis performed by other tools.

[R26] The tool shall create/update a database of installed toolkits and Kernel Services and their associated dependencies (i.e., required mission application and COE component toolkits, including RT Kernel services; UoF's; and system resources).

[R88]
The database, in conjunction with the tools, shall assure that a given toolkit is correctly associated with specific release(s) of the DII COE before adding toolkit information to the database.
[R27] [Requirement deleted.]

[R28] [Requirement deleted.]

[R29] A means shall be provided through which other tools can locate the dependency database associated with a specific release of the DII COE for RT.

4.2.2.5 Audit trail

[R30] The tool shall maintain an audit log of activities.

[R31] A notice that the process of building the dependency database is complete shall be displayed and recorded in the audit log.

4.3 Configuration Analysis Tools

The system integrator uses the configuration analysis tools to generate a description of the software to be configured for a RT target computer. Based on mission applications and COE toolkits selected by the integrator for inclusion, these tools produce a list of toolkits, Kernel Services, and RTOS units of functionality that must be configured for the target environment. These tools will not be included as part of the target RT COE environment; they run only in the integration environment. The tools provide lists of all required components. These lists are used by the system integrator to build a configured, RT COE based system to be installed on the target RT environment. The following subparagraphs identify specific functional requirements associated with the configuration analysis tools.

4.3.1 General Requirements for Configuration Analysis Tools

The requirements stated here apply to all of the tools identified in this document.

[R32] When the integrator begins to build a new configuration description, the tools shall prompt the integrator to supply all configuration identification information identified in Table 4-2 as being supplied by the user.

[R33] When the integrator updates a configuration description using the Configuration Analysis tools, the tools shall provide the integrator with an option to update configuration identification information that already exists in the configuration file.

[R34] The tools shall provide a means through which the integrator can attach comments to each of the fields in the configuration file RTConfig.
 These comments shall appear in the final output file as comment lines in the format described in Table 4-2.

[R35] Each tool shall accept input from the user designating the DII COE release from which elements are to be selected and against which analyses will be executed.

[R36] Each tool shall support iterative revision of the list of items selected. When the tool completes processing of each set of user changes, the user shall be offered the options of:

(a) terminating without saving any changes;

(b) terminating with all changes saved; or

(c) repeating the selection/modification cycle.

[R37] The user shall be asked to confirm the choice of the “terminate without saving any changes” option when selected.

[R38] When a GUI interface is in use and the user is required to select elements from a list, the list of options shall be presented in some form of pick list or menu from which the user may easily select/deselect one or more elements.

[R39] When some elements of a list are ineligible for manual de-selection, the display format shall use distinctive visual cues to inform the user of this ineligibility.

[R40] Each tool shall prohibit de-selection of an ineligible element of a list.

[R41] [Requirement deleted; duplicates [R35].]

[R42] When dependency information is accessed, only that information relevant to the intended target platform as indicated by a combination of CPU, operating system, and DII COE release, will be included in any selection process or dependency analysis.

[R43] The user shall be able to specify a file in which output is to be stored.

[R44] The tool(s) shall provide an interface through which the output of one tool may be directed to the input of another tool, e.g., in the style of a UNIX pipe interface. (To facilitate this style of connection, input should default to “stdin”, output to “stdout”.)

[R45] The interface between tools shall be based on ASCII text, so that the lists of data can be edited manually, if desired.

[R46] A structured format shall be defined for this ASCII text so that all products, including the final output of configuration description and build instructions, can be parsed by automatic tools, if desired in the future.

[R47] An audit log shall be maintained in which the tool records all errors and warnings that may reflect on the validity and completeness of the configuration information produced.

4.3.1.1 COE "Segment" Selector

This tool is used to create a complete list of required COE capabilities based on a list of COE and mission application toolkits provided by the system integrator for inclusion in the configuration. The system integrator identifies toolkits appropriate for his target RT environment from a list of those available on the integration environment. The tool analyzes the inter-component dependencies that the software (object libraries or executables) in the selected toolkits have on other COE and mission application RT components. The list is then revised to include the minimum set of toolkits that must be configured to satisfy those dependencies. The "segment" selection process iterates until the system integrator is satisfied that the list of required services is correct and complete. The integrator is NOT allowed to remove the name of a toolkit manually if that toolkit satisfies a dependency of any other toolkit on the list.

[R48] The tool shall support creation and modification of a list of toolkits the user wishes to include in the COE RT configuration. This list will be made available for other tools to analyze.

[R49] Allowable modifications shall include the addition and/or deletion of toolkits from the list of those to be configured.

[R50] The tool shall analyze the dependencies of the toolkits selected by the user on other toolkits and services of the COE. This dependency analysis shall produce the transitive closure of toolkit dependencies and add the names of all toolkits required to satisfy known dependencies of the list originally input by the user.

[R51] The tool shall be able to handle dependency failures. The intent is to allow the tool to specify all the "missing" toolkit names it finds as it analyzes the complete list of RT toolkits.

[R52] When the user enters a toolkit name that the tool cannot find in the dependency database, the user shall be offered the options of correcting the name, continuing with the toolkit name unchanged, or discarding the name. (The unrecognized toolkit name could have been entered directly by the user by typing in a response to a prompt, if that user interface option is available. It could also appear in a text file designated by the user as input to the tool.)

[R53] When the user elects to “continue” with a toolkit name that cannot be found in the dependency database, an entry shall be added to the audit log indicating that an unknown toolkit was selected for inclusion. The unrecognized name shall be included in the list of toolkits output by the tool for use in subsequent analysis steps, but a notation shall be added to indicate that dependency and other toolkit information was unavailable.

[R54] While traversing a chain of dependencies, the tool may find toolkit names in the database for which it finds no associated toolkit entries. When the tool finds an unknown toolkit name in the dependency database, the user shall be notified that the condition was detected, the occurrence shall be recorded in the audit log, and the name of the toolkit shall be added to the list of toolkits to be configured with the annotation described above.

[R55] [Requirement removed.]

[R56] When the user attempts to remove an element from the current list of toolkits to be configured, the tool shall make sure that no remaining toolkit depends on the toolkit selected for removal.

[R57] If the toolkit selected for removal is needed to satisfy a dependency of a remaining toolkit, the user shall be prohibited from removing the toolkit until the dependency is removed. (A dependency can be removed by removing the toolkit that generated the dependency.)

[R58] The final list of toolkits selected for inclusion shall be saved by the tool at completion in a form suitable for use as input to this tool in subsequent executions.

4.3.1.2 RT Kernel Services Selector

All Kernel Services will be delivered as extended toolkits. These toolkits will be available for selection via the Segment Selector Tool described above. Therefore, the requirements that appeared in this section have been subsumed by the requirements of 4.3.1.1.
[R59] [Requirement deleted.]

[R60] [Requirement deleted.]

[R61] [Requirement deleted.]

[R62] [Requirement deleted.]

[R63] [Requirement deleted.]

[R64] [Requirement deleted.]

[R65] [Requirement deleted.]

[R66] [Requirement deleted.]

[R67] [Requirement deleted.]

[R68] [Requirement deleted.]

[R69] [Requirement deleted.]

[R70] [Requirement deleted.]

[R71] [Requirement deleted.]

[R72] [Requirement deleted.]

4.3.1.3 RTOS Functionality Selector

This tool is used to create a list of required POSIX.13 UoF's
 of the RTOS. The system integrator provides a combined list of COE RT toolkits and RT Kernel Services to be analyzed. The tool analyzes the identified Kernel Services and toolkits and generates a list of the minimum set of required POSIX.13 UoF's that must be configured to support them.
[R73] As initial input, the tool shall accept a list of toolkits that have been selected for the target configuration.

[R74] The tool shall construct a list of the POSIX.13 UoF's that are to be included in the target configuration.

[R75] The tool shall extract the POSIX.13 dependencies of the toolkits and services in the input list from the dependency database for the relevant RT COE release and create a list of UoF's required.

[R76] The tool shall provide an interface through which the user can manually select additional UoF's for inclusion in the list.

[R77] The user shall also have the capability to remove UoF's from the list, subject to the restrictions on removal of ineligible items described in paragraph 4.3.1 above.

[R78] The tool shall recognize valid UoF and option names as identified in the POSIX.13 specification and augmented in Appendix B of the Kernel Services SRS.

[R79] When the input contains a name that is not a valid POSIX.13 UoF, the tool shall prompt the user to correct or discard the invalid name. No invalid UoF’s shall appear in the output generated by this tool.

[R80] A record of the need to correct or discard any UoF name shall be recorded in the audit log along with any information that could assist the user in tracing the source of the error.

[R81] The tool shall provide a method for the user to specify the location (e.g., a file path name) where the list of required toolkits, services, and UoF's is to be stored at the completion of analysis.

[R82] To support the integrator’s need to revise existing configuration information, the tool shall produce output in a form suitable for use as input on subsequent executions of this tool.

[R83] The tool shall provide a method of outputting the combined list of toolkits, and UoF's for possible editing. This could be handled by "piping" output in a UNIX style environment from the tool to a text editor for display and updating.

[R84] The POSIX.13 UoF's list generated by the RTOS functionality selection tool shall be the same as the names that have been designated in Appendix B of the Kernel Services SRS.

[R85] The tool shall provide control options that allow the tool to analyze the entire list of toolkits, Kernel Services, and POSIX.13 UoF's.

[R86] The tool shall determine whether a "build directions" list of required RT toolkits, Kernel Services, and POSIX.13 UoF's already exists.

4.3.2 RTConfig File: Build Directions

This document has referred to a list of RT extended toolkits and POSIX.13 units of functionality names that are created/updated during the "build" process. The list, recorded as the RTConfig file, acts as build directions (or requirements) for constructing a load image. The instructions provide input to the integration environment's utilities
 by specifying the required components that comprise the target RT system. This list shall be an ASCII file automatically generated and updated via the tools described in sections 4 and 4.3 of this document. The following table identifies the data to be included within the build instructions:

Table 4‑1. RTConfig File Contents
	Type of Data
	Comments

	Build configuration information
	Formatted text that identifies the load image build configuration information. Should identify target system hardware, RTOS, file creation date, and name of integrator.

	Extended Toolkit s required
	Composite list of required mission application and COE extended toolkits by name and version.

	
	

	POSIX.13 units of functionality required
	Composite list of required POSIX.13 units of functionality for the entire load image

	Required resources
	Formatted text of required devices, shared resources, and specific devices required by the included extended toolkits.

	Comments
	Free format text of comments associated with each included extended toolkit. Comments may be entered manually by the integrator. The configuration analysis tools may also use comment entries to add error messages, warnings, and additional contextual information to this file of build instructions.

A new file is required to specify components that comprise the target load image of a RT system. This ASCII file, RTConfig, will be automatically generated and updated via the tools described in section 4 of this document. The file acts as the build requirements for generating the target load image. The file will specify the following components for the target load image:

· Mission application toolkits by name and version;

· COE RT toolkits by name and version;

· Composite list of required kernel services for the entire load image;

· Composite list of required POSIX units of functionality for the entire load image;

· Summation of disk space required for the entire load image;

· Composite list of required hardware devices required for the entire load image;

· Composite list of RTOS controlled shared memory required for the entire load image;

The RTConfig file will have a well-defined syntax so various tools may read from and write into the file as required. The content and format of the file is described further in Table 4-2.

A double asterisk (**) in the Comments/Discussion column of the table identifies a field for which the user must be prompted to supply information explicitly.

Table 4‑2. RTConfig File Format

	Field Format
	Comments / Discussion

	
Target System Identification

	

	Target System Configuration ID:<user-defined configuration identifier>
	**This field identifies the target system to which these build instructions apply. It may be as general or as specific as the integration organization desires or requires.

	RTConfig File Creation:mm/dd/yyyy hh:mm:ss

Generated by:<integrator name>

	Date and time at which this version of the file was created by the Configuration Analysis Tools. Note: When the file is changed by one of the Config Analysis Tools, the creation date is updated, so this field actually describes the date of last tool-based modification. Generated by: field identifies the integrator who used the tools to generate the file.

	Last Manual Update:mm/dd/yyyy hh:mm:ss

Last Updated by:<integrator name>
	Since the file is a text file, it can be edited manually. Fields are included through which information about manual updates may be recorded.

	

Integration Environment
	These fields help the integrator trace the build instructions back to the environment in which they were generated. As a minimum this information is useful in locating the tools used to generate the info. It may also be helpful in tracking down the source of errors, should they be discovered.

	[Integration Environment]
	Required syntax

	Integration Hardware Platform:<user-defined identification and/or description of the hardware platform on which these build instructions were generated>
	The format of platform id is dictated by the configuration management plan of the integration organization

	OS:operating system name:release number

	Identifies the OS underwhich the integration tools ran. Information inserted by tool at time of execution.

	DIICOErelease:DII COE (RT) distribution release ID:path
	The path points to a directory that contains either the properly formatted DII COE directory structure or maps that directory structure to the physical organization of the local integration environment.

	Dependency DB Last Updated:mm/dd/yyyy hh:mm:ss
	Assumes appropriate dependency database can be located through accessing information associated with the DIICOErelease path

	Tool Identification:tool name:release number
	Identifies the name and release of the tool used to generate this file. Multiple occurrences of this line will be included if multiple automated tools are used to generate or update this file.

	
	

	
	

	
Target System Operating Environment
	This series of entries describes critical parameters of the target environment in which the configured software must execute.

	[Hardware]
	Required syntax

	$OPSYS:RT COE supported RTOS:OS version
	**Describes the OS release on which this software configuration must run

	$CPU:RT COE supported CPU designator
	**Describes the CPU on which this software configuration must run

	$Disk
:size

$Disk_required_by:toolkit name1:size 1

$Disk_required_by:toolkit name2:size 2

 ...

$Disk_required_by:toolkit namen:size n

	Optional descriptor indicating the minimum disk space in Mbytes that must be available in the target configuration. This number is the sum of sizes associated with $Disk descriptors for all toolkits and services selected. Detail lines relate specific requirements for non-volatile memory to the toolkit that generated the requirement. If this information is available at the service level, an optional service name field will appear in this record as well.

	$PARTITION:partition name:size

$PARTITION_required_by:partition name:toolkit name1:size1

$PARTITION_required_by:partition name:toolkit name2:size2

 ...

$PARTITION_required_by:partition name:toolkit name1:sizen
	Optional descriptor indicating a disk (mass storage) partition of specific name and minimum size that must be available in the target configuration. Detail lines relate specific partition requirements to the toolkit(s) that generated the requirement.

	Toolkits and Services Required
	

	[Mission Application Toolkits]

toolkit name1:toolkit prefix1:[version1]:
 path:

toolkit name2:toolkit prefix2:[version2]:
 path2

 ...

toolkit namen:toolkit prefixn:[versionn]:
 pathn
	There is an entry for each toolkit that must be configured. “path” indicates the directory of the integration environment in which the executables and/or libraries of this toolkit are located.

	[COE Component Toolkits]

toolkit name1:toolkit prefix1:[version1]:
 path1
toolkit name2:toolkit prefix2:[version2]:
 path2

 ...

toolkit namen:toolkit prefixn:[versionn]:
 [service namen]:pathn
	Same format; list of desired and required toolkits as compiled by the Segment Selector tool

	
	

	[POSIX Dependencies]

$POSIX_UNIT:POSIX Option 1

$POSIX_UNIT:POSIX Option 2

 ...

$POSIX_UNIT:POSIX Option m

$POSIX_UNIT: POSIX Unit of Functionality 1

$POSIX_UNIT: POSIX Unit of Functionality 2

 ...

$POSIX_UNIT: POSIX Unit of Functionality j

	List of POSIX options that must be supported and POSIX units of functionality that must be configured to support this configuration. This list is compiled by the RTOS Functionality Selector tool. Detail records identifying the source(s) of the requirement for each Option and Unit are also needed here.

	Special Hardware Requirements
	

	[Hardware Devices]

$HW_DEVICE:HW device ID 1

$HW_DEVICE:HW device ID 2

 ...

$HW_DEVICE:HW device ID x
	Entries inserted by the Segment Selector tool. Detail records identifying the source(s) of each device dependency are also needed here.

	Shared Memory Requirements
	

	[RTOS Controlled Shared Memory]

$OS_SHARED_MEMORY:size 1:toolkit 1

$OS_SHARED_MEMORY:size 2:toolkit 2

 ...

$OS_SHARED_MEMORY:size y:toolkit y
	Entries inserted by the Segment Selector tool. Detail records identifying the source(s) of each shared memory requirement are also needed here.

	Comments
	

	## <free form text including comments and warnings>
	While free form text comments may be inserted manually, these comment lines will also be used by the integration tools to record any anomalies, errors, or warnings detected during generation of the RTConfig file.

Appendix A
General Notes on Use Cases

Use case diagrams provide a method for capturing and analyzing the functional requirements of the system. They provide concrete descriptions of how an actor (human performing a role or external system) will use the system to get some benefit. They are used to elicit important requirements from users in meaningful chunks. A use case diagram contains a collection of use cases and actors.

The actors are the users and external systems that may interact with the system. Since actors represent system users, they help delimit the system and give a clearer picture of what it is supposed to do. Use cases are developed on the basis of the actor’s needs.

Use case diagrams contain simple icons representing actors, use cases, and the different relationships between them. A top-level use case diagram is used to visualize the boundaries of the system’s behavior. Use cases can include other use cases as part of their behavior. Use case diagram shows the set of external actors and the system use cases those actors interact with.

A number of guidelines should be kept in mind while generating use cases:

1. The most important functional requirements must be specified in use cases.

2. Use cases should not be too vague or complex to understand; they should describe some benefit the system will provide the user.

3. Use cases describe typical ways of using the system; it should describe the recommended way of interacting with the system

4. A use case has a beginning, a main body, and an ending; it tells a story of how actors will use the system.

5. Use cases should describe an explicit flow of actions that take place.

6. Use cases should be at most 4 pages in length. Generally, longer use cases may be too hard to understand.

A Use Case description is associated with each use case. Each description should contain the following information:

	Field
	Description

	Summary
	A brief summary of the use case. It should define what starts the use case, it basic processing, and what terminates the use case.

	Performance Notes
	This is an example of a non-functional requirement that can be tied to a use case.

	Assumptions
	Any assumptions or constraints on the system can be listed

	Actors
	All actors that interact with the use case. An actor is a role performed by a user of the system or some external system.

	Preconditions
	Anything that must be present before the use case can begin. It should describe all things that must be true before the operation can occur.

	Description
	1 to 4 pages of detailed explanation of how the use case happens. (e.g., This use case starts when Actor x …, The system responds by doing …., The use case ends when …).

	Exceptions
	Error responses, variations, etc. Exception handling will be treated as separate a use case.

	Post-conditions
	How the system will be left at the end of the use case. It should describe what must be true when the operation has completed.

	Frequency
	How often does this use case occur?

	Usability requirements
	Optional field that can be used to specify various user interaction requirements (e.g., how fast the system must respond to the user’s request, the ability to cancel a specific request, etc.).

	Illustration
	Drawings of screen “shots” that the user would see while the use case was in process. The idea is to provide a sample, not every possible screen; that should be provided in a User Interface Description specification.

	Notes
	Optional field for information that doesn’t conveniently fix elsewhere in the use case.

Scenarios

Scenarios are a textual description of one path through a use case. As such, there will be multiple scenarios to each use case. Scenarios include nominal as well as exceptional paths. Each scenario describes only one path through the use case. Exceptions and various decisions represent different paths. Each scenario describes the dynamic behavior of the system: how various parts of the system and the users communicate to provide required functionality.

Appendix B
Integration Tools Use Cases

The RT COE Kernel Integration activities are divided into two major areas:

7. Installation of COE RT toolkits, RT Kernel, mission application toolkits, and Integration Tools on an integration environment (Installation Tools) and

8. Generation of RTConfig file for the system integrator (Configuration Analysis Tools).

Each area's functional requirements are covered by its own set of use cases. Appendix A provides an overview of use cases for the reader who is unfamiliar with this technique.

5 Integration Environment Installation

The following paragraphs present a series of use cases for the installation of the COE RT toolkits, RT Kernel, and associated Integration Tools on to the integration environment of the system integrator. Figure B‑1is an overview use case diagram that provides a context for the following use cases. Each use case has a number of associated scenarios to provide additional detailed functional requirements and possible clarification.

[image: image4.wmf]Install

 RT Kernel &

Integration

Tools

2.1.1

Install

Requested RT

Toolkits

2.1.2

DII COE

Product

Distributor

Integration

Environment

COTS

Vendor*

System

Integrator

*e.g., vendor of

comercial

RTOS

Figure B‑1.
Installation of RT COE

Common assumptions and participants associated with the installation use cases are listed in the following table:

Table B-1
Common Assumptions and Participants

	Field
	Description

	Assumptions
	1. The DII COE Product Distributor releases and distributes the:

· Configurable Kernel ServicesNote 1 (DII COE abstractions above current OS layer) delivered as libraries and executable software that are compatible with the intended target RT environment;

· COE components delivered as libraries and/or executable software that are compatible with the intended target RT environment, i.e., delivered as extended toolkits;

· Integration tools delivered as executable software compatible with the integration environment; and

· Developer/user documentation and patches to the libraries, when required.

2. The integration environment is not typically the same as the RT system's target run time environment. The integration environment is used to configure software, select components and assemble the compiled components into an executable RT system image to be transferred (e.g., downloaded) to the RT system's target environment.

3. The integration environment used by the system integrator supports the Integration Tools. The integration platform is not constrained to be a certified DII COE (run time) Kernel platform.

4. The target RT environment is a DII COE RT platform.

5. In contrast to the current distribution of the DII COE, which begins with the installation of the OS, installing a new version of the RT Kernel and/or tools will not require the integration environment OS to be rebuilt.

6. Each RT COE toolkit, mission application toolkit and RT Kernel service provides a list of dependencies that must be satisfied to integrate successfully with the RT Kernel. 0 These dependencies are defined within RT extensions to the segment descriptors. The list includes:

· Segment/toolkit dependencies, including dependencies on Kernel Services;

· Dependencies on POSIX.13 units of functionality;

· Target system resource requirements (e.g., RAM, NVRAM, disk space, CPU utilization, etc.); and

· Targeted hardware platform.

7. The integration environment is assumed to provide at least command line access to the Integration Tools. This will allow the tools to run on integration environments that do not support a GUI. [R1] [R4] It is not the intent of this requirement to preclude the use of a GUI style interface.

8. While no specific integration environment utilities are identified by name, some assumptions have been made. It is assumed that UNIX "tar" or Windows NT "set up" like tools are available to extract the various integration tools, RT Kernel, etc. from the distribution media.

9. Tools are provided to create and populate a database of toolkit and Kernel service dependencies. [R26]
Note1 Kernel Services initial release of DII COE RT extensions will be developed by DISA. It is the government's intent that in future releases these services will be supplied directly by the platform vendor (OS vendor or other commercial vendor).

	Actors
	· DII COE Product Distributor - Provides the COE segments/toolkits, RT Kernel and integration tools.

· System Integrator – Software engineer and/or program integrator responsible for configuring, integrating, and/or building DII COE-compliant RT systems.

· COTS Vendor – Vendor of commercial RTOS and/or other commercially configured software products that provide approved object code and product-specific configuration tools to the system integrator. Note: the RTOS is logically considered part of the configurable Kernel but is not supplied by the DII COE Product Distributor.

· Integration Environment - Utilized by the system integrator to configure, integrate, and build a RT Kernel and RT COE compliant executables. The integration environment includes networked workstations, compilers, linkers, editors, CASE tools, and configuration management (CM) tools. It is not the intent to replace these tools with the Integration Tools.

5.1 Install RT Kernel and Integration Tools

This use case describes a full installation of the RT Kernel (excluding the RTOS) and Integration tools on the integration environment, which may, in fact, be the same as the system integrator' development environment. The integration environment will be used to configure the RT Kernel as part of the RT system build activities. The system integrator is assumed to have previously installed the RTOS utilizing whatever process was recommended by the vendor.

5.1.1 Use Case Description

	Field
	Description

	Summary
	The use case starts when distribution media containing the RT Kernel and/or integration tools is delivered to the program system integrator. An integration environment utility is used to copy (i.e., install) the RT Kernel and/or build time software onto the integration environment. The use case ends when the RT Kernel and integraton tools are installed on the system integrator's integration environment.

	Performance Notes
	TBD.

	Assumptions
	10. Refer to general assumptions in Table B1.

11. The utility to load RT Kernel and integration tools from the distribution media is available on the integration environment.

12. Any RT Kernel Services that are packaged as segments will be installed using the procedure described below.

	Actors
	· DII COE Product Distributor

· System Integrator

· COTS Vendor

· Integration Environment

	Preconditions
	· Distribution media containing RT Kernel and/or Integration tools is available.

	Description
	1. The DII COE product distributor provides a complete baseline of the RT Kernel and the current version of Integration tools for the system integrator's integration environment. The distribution media is CD-ROM, tapes, or TBD media.

2. The distribution media is loaded onto the system integrator's integration environment. The system integrator issues an appropriate command to read the distribution media and begin the installation.

3. The system integrator specifies the base directory into which the RT Kernel is to be loaded from the distribution media. [R10]
4. Each RT Kernel service is installed onto the integration environment. Refer to section B1.1.1 for additional functional requirements associated with the creation of Kernel service dependency database entries during the installation.[R26]
5. The complete, configurable RT Kernel is installed by the tool onto the integration environment relative to the directory identified in the step above. [R9]
6. The system integrator specifies the base directory in which the Integration tools are to be installed. [R11]
7. The Integration tools are installed by the tool onto the integration environment in the directory identified in the step above.

8. Failures encountered by the integration environment utility during the installation shall be identified and displayed to the system integrator.[R12]

9. The use case terminates with either a successful installation of the RT Kernel and Integration tools on the integration environment [R14] or the abnormal termination of the installation sequence due to a failure. [R30]

	Exceptions
	· Distribution media from which to install is not available.

· Distribution media is not readable.

· Not enough disk space available on the integration system to install the configurable RT Kernel and/or Integration tools.

	Post-conditions
	· The configurable RT Kernel and Integration tools are installed on the system integrators' integration environment.

	Frequency
	· Event driven. DII COE product distributor provides updates every 6 months (nominally), with major updates every 18-24 months as is currently done. It is up to the system integrators to determine whether each release is required for their system integration effort.

· Event driven. Patches can happen as required.

	Usability requirements
	TBD.

	Illustration
	TBD.

	Notes
	· When a system integrator “orders” the RT Kernel and Integration tools, the request must specify both the RT target and integration environment.

· DII COE products consist of object libraries for the RT Kernel, executable software and/or shell scripts for the Integration tools, appropriate RTOS patches, and user documentation.

· Installation of RT Developer tools is not addressed as part of this use case. Tools associated with the automatic generation of RT Kernel and COE segment dependencies are outside the scope of this document and will be covered under in a requirements specification for RT COE developer's tools.

· This use case does not address the configuration of the RT Kernel.

5.1.2 Scenarios

5.1.2.1 Initial Installation of RT Kernel and Integration Tools

The following scenario assumes the system integrator has loaded the OS and appropriate utilities onto the integration environment.

9. The system integrator loads the RT Kernel and Integration tools distribution media onto the appropriate data transfer peripheral device (i.e., tape drive, CD ROM reader, etc.).

10. Using an appropriate integration environment utility, the system integrator specifies the base directory for the RT Kernel and begins the installation. [R10]
11. Using an appropriate integration environment utility, the system integrator specifies the base directory for the Integration tools and begins the installation. [R11]
12. The configurable RT Kernel is installed onto base directory and appropriate sub-directories specified by the system integrator.

13. The executable files for the Integration Tools are installed onto the base directory and appropriate sub-directories specified by the system integrator.

14. A step is executed in which dependency information for all of the Kernel Service extended toolkits installed on the integration environment is bulk-loaded into the dependency database [using the RegisterSegment Tool].

5.1.2.2 Prior Version of RT Kernel Installed On Integration Environment

The following scenario assumes the system integrator has loaded the OS and appropriate utilities onto the integration environment.

15. The system integrator loads the RT Kernel and Integration tools distribution media onto the appropriate data transfer peripheral device (i.e., tape drive, CD ROM reader, etc.).

16. Using an appropriate integration environment's utility, the system integrator begins the installation of the RT Kernel and integration tool executable files into the integration environment sub-directory. [R10]
17. As each Kernel service is installed, the integration environment utility checks to see if there is an existing version of the service already installed in this location within the integration environment. [R13], [R23]
18. An earlier version of a service is detected. The integrator is advised to terminate the installation, archive any old versions that should be retained, and attempt the installation again. [R13]

19. The integrator deletes the exiting version of the Kernel Service in question.

20. The integrator restarts the installation process at the point at which the error was detected. (This may be accomplished by restarting at the step that failed, if possible, or by stepping through steps completed earlier until the point of failure is reached.)

21. When the process of loading Kernel Services is completed successfully, the integrator updates the dependency database to incorporate the new release. [R26](This step may be accomplished by updating individual entries in the database or by deleting the old database for the release and rebuilding it from scratch.

22. Using an appropriate integration environment utility, the system integrator specifies the base directory for the Integration tools and begins the installation. [R11]
23. As each tool is installed, the integration environment utility checks to see if there is an existing version of the tool already installed in this location within the integration environment. [R13]
24. The configurable RT Kernel is installed relative to the base directory specified by the system integrator.

25. The executable files for the Integration tools are installed relative to the base directory specified by the system integrator.

5.2 Install Requested RT Toolkits

The system integrator asks the DII COE product distributor to supply DII COE extended toolkits that are compatible with the program's target RT platform and requirements. On receipt of these toolkits, the system integrator installs the toolkits onto the integration environment. This use case describes the installation of DII COE compliant extended toolkits onto an integration environment.

5.2.1 Use Case Description

	Field
	Description

	Summary
	The use case starts when the requested DII COE extended toolkits are delivered to the system integrator. The requested DII COE extended toolkits are installed on the integration environment of the system integrator. The use case ends with the installation of the DII COE extended toolkits onto the integration environment.

	Performance Notes
	TBD

	Assumptions
	1. Refer to general assumptions in section B1.1.

2. This step is included because, although this document addresses only configuration of the Kernel, the configuration process is driven through knowledge of the DII COE extended toolkits that will provide software for the target environment of the RT system. The extended toolkits compatible with the intended target RT environment must have been installed on the environment to give the Integration tools access to information on RT Kernel and RTOS dependencies.0
3. The extended toolkits to be installed are appropriate for the intended target RT system environment. [R19], [R25]
4. The utility required to load files from the distribution media is available on the environment.

5. All extended toolkits loaded in a single session from the same distribution media will be stored relative to the same base directory.

6. The extended toolkits supplied are installed onto the integration environment using a "Installation tool" that may simply use utilities of the integration environment, e.g., tar, for actual loading.

	Actors
	· DII COE Product Distributor

· System Integrator

· Integration Environment

	Preconditions
	· The DII COE extended toolkits are available on distribution media.

· A tool or utility for installation is available on the integration system.

· Sufficient space is available on the integration environment to successfully install the requested extended toolkits.

	Description
	1. The use case starts when the integrator receives the requested DII COE extended toolkits for the program's target RT environment from the DII COE product distributor. The distribution media is CD-ROM, tapes, or TBD media.
2. The system integrator mounts the distribution media.
3. The Installation toolintegrator executes the tool in such a way that it produces an audit log file in which all installation activity will be recorded. [R30]
4. In response to a prompt, the integrator tells the installation tool the base directory in which the extended toolkits are to be installed. [R15]
5. The tool checks to make sure that the distribution media contains segments that are compatible with the COE release into which the segments are to be installed. (The distribution should be for the appropriate RT COE release and target platform.) [R25]
6. The "Installation tool" offers the integrator the option to load all extended toolkits on the distribution media or to load extended toolkits selectively. [R20] A menu of available extended toolkits is available to aid the integrator in selection. [R21]
7. If the extended toolkit being installed already exists on the integration environment, the event will be identified and recorded in the audit log. [R23] The system integrator is prompted to specify whether the new version of the extended toolkit should overwrite the existing version or be ignored. The result of the decision is recorded in the log and the installation continues. [R24]
8. When all extended toolkits have been installed, a bulk-load tool is used to construct a dependency database containing information on all extended toolkits loaded within the directory structure for the RT DII COE release. [R26]
9. The use case terminates when selected DII COE extended toolkits have been successfully installed on the integration environment or the installation sequence has been terminated due to a failure. A notice that the installation process is complete is displayed and recorded in the audit log. [R31]

	Exceptions
	· Distribution media from which to install is not available.

· Distribution media is not readable.

· The utilities necessary for RT COE extended toolkit installation are not available in the integration environment.

· An audit log cannot be opened.

· There are insufficient system resources to install the DII COE extended toolkits.

· Base directory selected for installation does not exist.

	Post-conditions
	· The requested DII COE extended toolkits are installed onto the system integrator's integration environment.

	Frequency
	· Upon request from the system integrator.

· Patches are installed as necessary between scheduled releases.

	Usability requirements
	· The integrator should be able to review a list of the items contained on the distribution media without having to load the extended toolkits onto the integration environment first. [R21]
· The integrator should have options to either load all extended toolkits contained on the distribution media or to load specific extended toolkits selectively. [R20]

	Illustration
	TBD.

	Notes
	· When a program "orders" DII COE extended toolkits, the request must specify both the target RT environment and the integration environment.

· Multiple versions of COE extended toolkits may be installed onto the integration environment to support integration. Appropriate CM processes should be in place prior to installing additional versions of a extended toolkit.

5.2.2 Scenarios

5.2.2.1 Extended Toolkit Successfully Installed On Integration System

The following scenario assumes the system integrator has loaded the OS and appropriate utilities onto the integration environment and the RT segment installer has already been installed.

26. The system integrator loads the distribution media containing the DII COE extended toolkits onto the appropriate data transfer peripheral device (i.e., tape drive, CD ROM reader, etc.).

27. The system integrator starts the appropriate installation tool.

28. The integrator is prompted to enter the name of the base directory into which the extended toolkit(s) will be installed. [R15]
29. The Installation tool displays a list of extended toolkits available to be loaded onto the integration environment. [R21]
30. The system integrator selects a toolkit for installation from the list of those available. [R20]
31. The tool finds that no existing version of the toolkit is installed in the destination directory.[R23], [R25]
32. The tool creates a sub-directory structure for the extended toolkit according to the rules defined for DII COE extended toolkits. [R16], [R17]
33. The tool stores the extended toolkit's DII COE compliant files into the sub-directory.

34. The Installation tool writes a log entry to "stdout" describing the toolkit's successful installation onto the integration environment. [R30], [R31]

35. The Installation tool queries the system integrator whether more extended toolkits are to be installed from the distribution media. [R5], [R22]
36. The system integrator specifies that no more toolkits are to be installed.

37. An installation completion message is displayed and the tool terminates. [R31]
38. The system integrator invokes a tool to load the dependency data for the extended toolkits into the dependency database.

5.2.2.2 Extended Toolkit Exists On Integration System

The following scenario assumes the system integrator has loaded the OS and appropriate utilities onto the integration environment and the installation tool is already available.

39. The system integrator loads the distribution media containing the DII COE extended toolkits onto the appropriate data transfer peripheral device (i.e., tape drive, CD ROM reader, etc.).

40. The system integrator starts the Installation tool.

41. The base directory for installation of the extended toolkit(s) is supplied to the tool by the integrator. [R15]
42. The Installation tool displays a list of extended toolkits available to be loaded onto the integration environment. [R21]
43. The system integrator selects one toolkit from the list of those available. [R20]
44. The tool finds that an existing version of has been installed previously on the integration environment.[R23]
45. The Installation tool queries the system integrator to specify whether the existing extended toolkit should be overwritten, the new version ignored and the installation process continued, or the installation process terminated. [R24]
46. The system integrator wants to install the new version, but not at the cost of losing the old version. He terminates the installation process
, manually moves the existing version from its current location to another (e.g., archival) location, and restarts the installation tool.[R18] In addition, the user manually removes the old version's dependency data entry.

47. The original process repeats through step 5, in which no old version is found, and continues with step 10.

48. The tool copies the new segment from the distribution media into the segment DII COE compliant sub-directory. [R16]
49. The Installation tool writes a log entry to "stdout" describing successful installation of the extended toolkit onto the integration environment. [R30]
50. The Installation tool queries the system integrator whether more extended toolkits are to be installed from the distribution media. [R5], [R22]
51. The system integrator specifies that no more extended toolkits are to be installed.

52. An installation completion message is displayed and the tool terminates. [R31]
53. The integrator invokes a tool to load the dependency data for the extended toolkit(s) into the dependency database.

6 Configure RT Kernel

The process of configuring the RT Kernel is based on the selection of appropriate DII COE extended toolkits and Kernel Services that are available for the target RT environment on the system integrator's integration environment.

A list of desired (i.e., selected) extended toolkits is created by some means (e.g., via a text editor, using GUI menus provided by the integration tools, etc.). The extended toolkits on the list are analyzed for dependencies on other DII COE extended toolkits, including both mission applications and COE components. Once the dependency analysis is complete, the list of extended toolkits and system resources each requires (e.g. RAM, NVRAM, disk space, CPU utilization, etc.) is reported to the system integrator.

The list of the DII COE extended toolkits selected is then analyzed for dependence on RT Kernel Services. A minimum list of necessary RT Kernel Services is then generated. The system integrator can review the list of services and system resources they require. Additional Kernel Services may be selected and the dependency analysis repeated. Kernel Services may also be removed from the list, as long as they are not required in order to satisfy dependencies on any extended toolkits or Kernel Services that remain.

The list of required DII COE extended toolkits and RT Kernel Services is then analyzed for dependence on RTOS functionality. The minimum RTOS capability that must be configured is then presented for review. The system integrator can review the RTOS functionality and the required system resources. Functionality may be added or deleted and the dependency analysis repeated. RTOS functionality may be removed, but only if they are not required in order to satisfy dependencies of any extended toolkit or Kernel service that remains.

It should be noted that the output from each analysis tool is intended to be the input to the next analysis step. [R44] A suitable, readable output format is also assumed.

The final RTConfig file is used by the system integrator as a set of "build directions" to configure the RTOS and to assemble and link the configured RTOS, RT Kernel Services and DII COE extended toolkits utilizing software tools of the integration environment. In addition, a list of the system resources required is generated for each specified extended toolkit and Kernel service based on the information supplied with each extended toolkit's SegInfo descriptor file.

It should be noted that the DII COE extended toolkits and RT Kernel Services must be available for the target RT platform the system integrator intends to use. Also, the integration environment must support the RT COE Integration tools.

Figure B‑2 illustrates the RT Kernel configuration activity flow. There is a use case associated with each major activity block within the figure.

[image: image5.wmf]Edit segment list

from menu of

those installed

Start

Add/Delete

Segments

?

Generate list of

all required

 segments*

Yes

Segment & RT

Kernel Services

Dependency Data

Select Segments

Select segments

from those

installed

Review

 segment

dependencies

*Generate list by

dependence analysis of

selected segments

Installed Segments

Generate list of req'd

POSIX API's by

Units of Functionality*

Select RTOS Functionality

Segment &

RT Kernel Services

Dependency Data

Review Units of

Functionality

dependencies

Add/Delete

Units of

Functionality

?

Edit list of Units of

Functionality from

those available

Yes

*

Generate list by

dependence analysis of

selected segments

*Commerical development tools

used to assemble & link the RT

Kernel based on the list

generated

No

Build Configured

RT Kernel*

No

Figure B‑2.
Configuring the RT Kernel

The following paragraphs present a series of use cases associated with configuring the RT Kernel for a specific program using the Integration tools on the system integrator's integration environment. The use case diagram in Figure B‑3 provides some context for the following use cases. Each use case has a number of associated scenarios to better illustrate the required functionality.

[image: image6.wmf]Select

Segments

Integration

Environment

System

Integrator

Select RTOS

Functionality

List of

Components to

be Configured

Figure B‑3.
RT Kernel Integration Activities
Those issues in common with the build time use cases are listed in the following table.

	Field
	Description

	Assumptions
	1. Each real-time DII COE extended toolkit, RT Kernel Service, and the RTOS functionality to be integrated into the RT COE compliant system are available on the integration environment.

2. Each DII COE RT extended toolkit and RT Kernel service will provide a list of dependencies that must be satisfied to integrate (a.k.a. build) it into DII COE compliant RT executable(s) for this target successfully.
 0 These dependencies are defined within RT extensions to the segment descriptors. The list shall include:

· Toolkit dependencies, including dependencies on RT Kernel Services;

· Dependencies on POSIX.13 units of (operating system) functionality;

· Dependencies on particular integration environment capabilities (e.g., compilers);

· Target system resource requirements (e.g., RAM, NVRAM, disk space, CPU utilization, etc.); and

· Targeted hardware platform.

3. The dependencies and resource requirements of all selected DII COE extended toolkits and RT Kernel Services are available on the integration environment.[R42], [R59]
4. The integration environment is assumed to provide command line access to the Integration tools at a minimum. Alternatively, a GUI based set of tools is provided to support the build time activities.[R1], [R3]

	Actors
	· System Integrator – Program (project) personnel who are responsible for creating, integrating, and/or building RT COE compliant systems.

· Integration Environment - Utilized by the system integrator to select, integrate, and build a configured RT Kernel and RT COE compliant executables. The integration environment includes networked workstations, program specific compilers, linkers, editors, CASE tools, and configuration management (CM) tools. It is not the intent to replace these tools with the Integration tools.

· List of components to be configured - The Integration tools shall generate human readable lists of components that are to be included when the RT COE based system is built. These lists will be also be used as instructions and/or requirements for the (optional) configuration of the RTOS and the system build process. [R45], [R46]

	Notes
	· The tools for deriving the configuration of the RT Kernel should be implemented as GUI based tools. [R4] Implementing the tools in Java may be an appropriate way to provide portability to many integration environments.

Select [RT] Extended Toolkits

The RT system integrator will select extended toolkits that are to be included in the executable image(s) for the target computer. The system integrator selects or removes specific extended toolkits by name from a list of those available in the integration environment for this DII COE RT release.

6.1.1 Use Case Description

	Field
	Description

	Summary
	The use case begins when the system integrator specifies a set of DII COE extended toolkits that will be incorporated into a single RT COE compliant computer. The list is analyzed and dependencies (between extended toolkits and on RT Kernel Services) identified. The list is extended to include any extended toolkits required for correct execution of the selected services. The dependency analysis is recursive, terminating when an analysis path reveals no additional dependencies. The use case ends with the generation of a list describing the minimum set of DII COE extended toolkits that are required when the executable image.

	Performance Notes
	TBD.

	Assumptions
	1. Refer to the general assumptions listed in section B1.1.

2. A database of dependency information has been generated as the RT DII COE RT Kernel and extended toolkits were installed onto the integration environment.

	Actors
	· System Integrator

· Integration Environment

· List of components to be configured

	Preconditions
	13. All required extended toolkits are available on the integration environment.

14. The dependencies and resource requirements of all selected extended toolkits are available on the integration environment. [R42]

	Description
	1. The system integrator activates the Extended Toolkit Selection Tool. At a minimum this should be done via a command line entry. Alternatively, activation could take place via a GUI based icon or menu item selection. [R3]
2. The integrator shall be prompted for to specify the DII COE release against which selections and dependency analysis are to be conducted. Error! Reference source not found.
3. The system integrator may indicate that an existing list of desired DII COE extended toolkits is to be used as the initial configuration. At a minimum, this information can be entered via a command line with the system integrator supplying the name of the file that contains a list of DII COE extended toolkits to configure.[R6], [R58]

4. When the integrator does not begin with an existing configuration, the tool will prompt the integrator to supply configuration identification for the target configuration. [R32]
5. When the integrator begins with an existing configuration, the tool will offer the integrator the opportunity to update configuration identification for the target configuration. [R33]
6. If a GUI is supported, a list of the DII COE extended toolkits from which the user may select is displayed. [R39] This list will include all DII COE extended toolkits available in the integration environment. [R32]
7. The integrator selects [additional] DII COE extended toolkits to be included in the configured RT COE compliant system. A toolkit selected previously may be removed from the list at this time, if desired. [R39], [R40]
8. The tool shall analyze the dependencies of the selected DII COE extended toolkits. The list shall be expanded to include any additional DII COE extended toolkits upon which the selected toolkits depend.[R50]

9. The list of extended toolkits is presented to the system integrator for review and possible modification. At a minimum, the tool shall output a list of selected extended toolkits and identify any additional extended toolkits the tool added to satisfy extended toolkit dependencies. The extended toolkits required to satisfy dependencies will be identified to the system integrator. [R39]

10. The integrator may add or delete extended toolkits to/from the list of those to be configured. [R49] The list represents the COE extended toolkits that will be included in the DII COE compliant RT system. If a GUI is used, the list of available COE extended toolkits on the integration system will be displayed to aid in selection.[R38]
11. The selection process iterates until the integrator is satisfied that the list of desired components is complete and correct.[R36]
12. The use case ends with production of a list of COE extended toolkits to be incorporated into the RT COE compliant system.

	Exceptions
	· Integrator attempts to remove an extended toolkit that is required to satisfy a dependency of a selected component.

· Base directory specified by the integrator does not exist.

· Database of dependency data cannot be accessed.

· A dependency of a selected component cannot be satisfied.

	Post-conditions
	· List of the DII COE extended toolkits that will be included in the DII COE compliant RT system is available to be used to select required RT Kernel Services.[R44]

	Frequency
	Event driven. Integrator can regenerate the list as often as required.

	Usability requirements
	TBD

	Illustration
	TBD

	Notes
	· This activity is a prerequisite to the selection of specific RT Kernel Services to be included in the system.

6.1.2 Scenarios

6.1.2.1 User Provides List of Extended Toolkits

The following scenario assumes a command line based integration environment.

54. The system integrator activates the Extended Toolkit Selection tool. [R3]
55. The system integrator indicates the DII COE release for which extended toolkit information is to be processed.[R35]

56. The system integrator optionally specifies the file name that contains a list of DII COE extended toolkits to be analyzed. [R6] Default is to input the list from "stdin".

57. The user optionally specifies the file name in which to store the updated list of DII COE extended toolkits required. Default is to output the list to "stdout".[R43]
58. For each extended toolkit listed, the dependency data are analyzed. As new dependencies are identified, the names of those DII COE extended toolkits shall be appended to the list to also be checked for additional extended toolkit dependencies.[R50]
59. The process shall continue until all RT extended toolkits in the (expanded) list have been analyzed and no additional RT extended toolkits need to be added to satisfy their dependencies. [R50]
60. Output the accumulated list containing the names of all required DII COE extended toolkits to be configured. [R58]
6.1.2.2 Invalid Extended Toolkit Entry

The following scenario assumes a GUI-based integration environment.

61. The system integrator selects Extended Toolkit Selection tool for execution.

62. The system integrator requests a dialog box to "open" the named file that contains a list of extended toolkits to be analyzed. [R6]
63. The dependency data for listed extended toolkits are accessed. [R42]

64. A listed extended toolkit name can not be found on the integration environment.

65. The failure is logged.[R47]
66. A dialog box is displayed to the system integrator requesting whether the analysis process should ignore the erroneous extended toolkit name and continue. [R5], [R51], [R52]
67. The system integrator selects the "continue" option via the dialog box and the decision is recorded. The name of the missing extended toolkit is added to the list of extended toolkits that are to be included in the configuration, but it is flagged to show that it could not be found in the dependency database. [R53] (The implication is either that the name contains an error or that a required extended toolkit has not yet been loaded onto the integration environment.)

68. For each extended toolkit listed, the extended toolkit dependency data are analyzed. As new dependencies are identified, the names of those extended toolkits are appended to the list to also be checked for additional extended toolkit dependencies. [R50]
69. The operator specifies where the resultant accumulated list containing the names of all required extended toolkits to be configured will be output. The choices are to display the resultant list of the names of extended toolkits to be configured or save the list in a file designated by the system integrator. [R43]
6.2 Select Kernel Services

Kernel Services are to be delivered as extended toolkits, therefore no special tools and/or scenarios are required to describe the process of selecting Kernel Services for configuration.

6.3 Select RTOS Functionality

The configured RTOS must support the POSIX.13 API requirements of the DII COE extended toolkits, mission applications, and RT Kernel Services that will execute in the system. These requirements are determined through analysis of the extended toolkits and Kernel Services selected. The system integrator may manually add POSIX.13 API functional groups beyond the minimum set determined through dependency analysis, but the user may not remove required functionality.

6.3.1 Use Case Description

	Field
	Description

	Summary
	The use case starts when the system integrator activates the RTOS Functionality selection tool. Based on a list of DII COE extended toolkits, mission application extended toolkits, and RT Kernel Services, a minimum list of POSIX.13 API functional groups is generated. The system integrator can optionally add POSIX.13 functional groups to the list. The use case terminates with production of a list of required POSIX.13 API functional groups appended to the list of required RT COE compliant extended toolkits and RT Kernel Services.

	Performance Notes
	TBD.

	Assumptions
	1. Refer to the general assumptions listed in section B1.1.

2. Additional POSIX.13 API functional groups in the RTOS may be included manually by the system integrator. [R45]

	Actors
	· System Integrator

· Integration Environment

· List of components to be configured

	Preconditions
	· A list of required RT COE compliant extended toolkits and RT Kernel Services has been generated.

· The RTOS functional unit dependencies of all extended toolkits and Kernel Services are available on the integration environment.

	Description
	1. The integrator activates the RTOS functionality selector tool. [R3]At a minimum, this will be done via a command line. Activation could also take place via a GUI based icon or menu item selection. [R3]
2. The system integrator specifies a list of required DII COE extended toolkits and Kernel Services. A list of POSIX.13 units of functionality to be configured may already be part of the list. At a minimum this will be done via as a command line with the system integrator providing the name of the file containing the list. [R6], [R7], [R73]
3. Additionally, the system integrator may specify that an RTOS configuration will be built using a specific POSIX.13 profile as a starting point. [R76] When a POSIX.13 profile is specified, supplying a list of DII COE extended toolkits and Kernel Services by the user is optional.

4. A POSIX.13 profile is expanded into a list of POSIX.13 UoF's and added to the list of required Kernel Services and extended toolkits.[R78]
5. The list of required extended toolkits and Kernel Services is analyzed. POSIX.13 UoF's required to support the extended toolkits and Kernel Services are added to the list of required Kernel Services and extended toolkits. [R29]

 REF _Ref443125020 \r \h
[R74], [R75]
6. The system integrator reviews the list of required POSIX.13 units of functionality. Additional units of functionality can be selected for inclusion by the system integrator. [R76] Non-essential units of functionality may also be removed from the list. [R77] (The system integrator is not allowed to remove any POSIX.13 UoF's required to satisfy dependencies of any of the listed DII COE extended toolkits or RT Kernel Services.)

7. The selection process iterates until the system integrator is satisfied with the selection of POSIX.13 units to be included in the configuration.

8. The use case terminates when the POSIX.13 UoF's that must be supported by the configured RTOS is complete and correct.
 The final list is stored in a file designated by the system integrator. [R74], [R82], [R83], [R84]

	Exceptions
	· The user specifies an invalid file name for the list of required COE component, mission applications, and/or RT Kernel Services extended toolkits.

· An invalid extended toolkit name is specified in the list of requiredCOE, mission applications, and/or RT Kernel Services extended tolkits. [R79]
· User attempts to delete a required RTOS unit of functionality. [R39], [R40]

	Post-conditions
	· A final list of COE, mission application, and RT Kernel Services extended toolkits, and required POSIX.13 units of functionality to be configured are produced. [R74]

	Frequency
	Event driven. System integrator can regenerate the lists as often as required: as often as the list of DII COE extended toolkits changes.

	Usability requirements
	TBD

	Illustration
	TBD

	Notes
	TBD

6.3.2 Scenarios

6.3.2.1 User Provides Valid List of Extended Toolkits & Kernel Services

The following scenario assumes a command line based integration environment.

70. The system integrator activates the RTOS functionality selection tool. [R3]
71. The system integrator specifies the name of the file that contains a list of COE component, mission application, and RT Kernel Services extended toolkits to be analyzed. Default is to input the list from "stdin". [R6], [R7], [R73]
72. The system integrator specifies the file name in which to store the updated list of extended toolkits, including Kernel Services, and POSIX.13 units of functionality to be configured. Default is to output the list to "stdout". [R81], [R83]
73. The dependency data for listed extended toolkits, including Kernel Services are accessed [R75]
74. The RTOS units of functionality dependencies are collected. [R75]
75. The POSIX.13 units of functionality required are appended to the list of required extended toolkits, includingKernel Services. [R82]
76. The list containing the extended toolkits and POSIX.13 units of functionality to be configured is output. Default is to output the list to "stdout", which has been reassigned to a file designated by the system integrator. [R83]
77. The tool displays an analysis complete message and terminates.

6.3.2.2 Invalid Entry in List of Extended Toolkits

The following scenario assumes a GUI-based integration environment.

78. The system integrator selects the RTOS functionality selection tool via a menu option. [R3]

79. The system integrator requests, via a dialog box, to "open" a file that contains a list of COE component, mission applications, and associated RT Kernel Services extended toolkits and any previously identified POSIX.13 units of functionality to be analyzed. [R6], [R7], [R73]
80. The dependency data for listed extended toolkits are accessed. [R29]
81. A listed extended toolkit name cannot be found on the integration environment. [R79]

82. The failure is logged. [R30], [R80]
83. A dialog box is displayed to the system integrator requesting whether the analysis process should ignore the erroneous extended toolkit name and continue or abort the analysis. The system integrator deletes the erroneous name from the list. The system integrator selects the "continue" option via the dialog box and the decision is recorded. [R85]
84. The dependency data for listed RT Kernel Services are accessed. Error! Reference source not found., [R75]
85. A listed RT Kernel service name can not be found on the integration environment (e.g., the listed Kernel service name was misspelled, the requested Kernel service has not been installed onto the integration environment, etc.). [R69]

86. The failure is logged. [R80]
87. A dialog box is displayed to the system integrator requesting whether the analysis process should ignore the erroneous Kernel service name and continue or abort the analysis. The system integrator selects the "abort" option via the dialog box and the decision is recorded. [R36]
88. A dialog box is displayed requesting whether the current accumulated list of COE component, mission application, and RT Kernel Services extended toolkits, and POSIX.13 units of functionality should be saved or deleted. [R86]
89. The system operator selects the "delete" option and the tool terminates. [R86]

TRD

Segment

Development

Tools�SRS

SRS

Kernel Services

SRS

Integration

Tools

SRS

� DISA has proposed that all segments be made available in extended toolkit form, suitable for loading onto an integration environment. Conventional DII COE runtime segments may be produced from the toolkit distribution if desired.

� It is assumed that mission application toolkits are present in the integration environment in the format required by the Integration tools.

� The validation of UoF designators has been allocated to the VerifySeg tool. (See the Segmentation Tools SRS.) It is assumed that any change to the Segment Descriptors will be verified through execution of VerifySeg before the information in the descriptors is added to the dependency database.

� Use of a text editor to manually insert comment lines into the file is one option for initial implementation.

� The term UoF is used loosely in the text of this document to include both Units of Functionality, as described in POSIX 1003.13, and POSIX options as defined in POSIX 1003.1 and summarized in POSIX 1003.13.

� The RTConfig file provides information in a standardized format which could be used directly by the COTS tools of the environment. At the present time there are no plans to provide separate DII COE tools to integrate information from this file with the vendor-unique tools typically used to build load images.

� The “Disk” descriptor is used here for compatibility with the segment descriptors loaded with each segment. We assume this disk is an abstraction that may be mapped onto any kind of nonvolatile memory used in a specific system configuration. It is not necessarily a rotating disk device.

� During termination, an entry in the log file records the conflict and its resolution.

� At some future time it is desirable to have a separate developer's tool that will create the dependency list by analyzing the source code for specific COE, RT kernel services, and RTOS functionality references. Our current assumption is that the dependency information will be generated manually by the supplier of the segment or service.

� This option assumes that the system integrator knows the OS configuration that is desired but does not perhaps yet know which specific RT COE segments and services will execute on that OS.

� The correctness of the selection is the judgment of the integrator.

POC: Hal Hawley

253.773.7317

hal.hawley@boeing.com
3
POC: Hal Hawley
iii
253.773.7317

hal.hawley@boeing.com

_1034491229.vsd
Integration Activities�

DII COE Product Distributor�

Installation
Failure�

System Integrators�

Mission Appl
Extended Toolkit Segments �

RT Kernel
Services �

Integration Tools�

Build Directions for Configuring RTOS &
RT kernel services�

 Requested
Extended Toolkit
Segments �

_1034491498.vsd
Segment Dependencies�

RT Kernel Dependencies�

ConfigureRT Kernel
�

Installed RT Kernel �

Integration Environment Configuration�

Build Directions for Configuring RTOS�& Required
RT kernel services�

Mission Appl
 Extended Toolkits�

Installed Extended Toolkits�

Installation
Failure�

Installation
Failure�

Integration Tools�

Install
 RT Kernel & Int.
Tools�

�

Install Requested RT
Extended Toolkits�

 Requested
Extended Toolkits
 �

RT Kernel Services �

Required Segments for RT System�

Determine Min. Req'd RT Kernel Config.�

Integrator Specified RT kernel Services�

Configure RT Kernel Services�

Configure RTOS
APIs�

Create RT System Build Makefile �

Build RT System�

Mission App(s)�

RTOS API Configuration�

RT Kernel Services Configuration�

Min. RTOS API Configuration�

Min. RT Kernel Services Configuration�

Integrator Specified
RTOS APIs�

Integrator Specified Segments�

Installed Segments�

RT System
Load Image�

Installed RT Kernel Services�

_1017907511.vsd
System
Integrator�

Install
 RT Kernel & Integration Tools
2.1.1�

*e.g., vendor of
comercial RTOS�

Install Requested RT Toolkits
2.1.2�

DII COE Product Distributor�

Integration Environment�

COTS
Vendor*�

_1019297115.vsd
Create
RT Application
 Ext. Toolkit(s)�

Complie, Link & VerifySeg
RT Application
Ext. Toolkit(s)�

Integrate
RT Appl. Ext. Toolkit(s) + Configured RTOS +
Configured RT kernel +
 COE RT Ext. Toolkit(s) �

Debug
RT Application Ext. Toolkit(s) �

Determine Req'd
RT Kernel Configuration Based on Selected RT Capabilitiess�

Identify & Request RT Platform Specific
RT Segments & Kernel�

Install in Target RT environment�

Design
RT Application
Ext. Toolkit�

Request
Integration Environment Specific Integration Tools �

Identify
RTOS & Tools �

RT System Requirments�

Purchase
RTOS & Development Tools From Vendors�

Select COE Capabilities and Mission Applications that must be supported�

Build
Directions�

DII COE Ext. Toolkits & RT Kernel�

Install
RTOS & Tools�

Segment/Ext. Toolkit Development�

�

�

Install RT Ext. Toolkits, Kernel, & Integration Tools �

Activities Requiring DII COE Integration Tools�

Determine RTOS Configuration & Create Build Directions�

Target
Environment�

Integration Environment�

�

Integration�

Build Installable Image
 �

RTOS�

Complete & Tested RT Mission Appl Ext. Toolkits�

Configure RTOS�

Configured RTOS�

_1015132516.vsd
Edit segment list from menu of those installed�

Select segments from those installed�

*Generate list by dependence analysis of selected segments�

Add/Delete
Segments
?�

Generate list of
all required
 segments*�

Start�

Segment & RT Kernel Services Dependency Data�

Yes�

No�

Review
 segment dependencies�

Select Segments�

Generate list of req'd POSIX API's by
Units of Functionality* �

Select RTOS Functionality�

Segment &
RT Kernel Services Dependency Data�

Review Units of Functionality dependencies�

Add/Delete
Units of Functionality
?�

Edit list of Units of Functionality from those available�

*Commerical development tools used to assemble & link the RT Kernel based on the list generated�

Yes�

No�

Build Configured
RT Kernel*�

*Generate list by dependence analysis of selected segments�

Installed Segments �

_1015133768.vsd
System
Integrator�

Select Segments
�

Select RTOS Functionality
�

List of Components to be Configured�

Integration Environment�

