Table ‑1. Responses to Vendor Self-Assessments Against RT TWG Requirements (1 of 3)

	Requirement
	ORBexpress RT

	(1) Is the ORB designed so that other processes do not block ORB operations indefinitely?
	· Priority inheritance from user tasks/threads

· Data structures that support bounded execution times

	(2) Does the ORB support transport protocols other than TCP/IP?
	· Offers a replaceable transport feature through which users may replace protocols supplied with the ORB:

· Implemented:

IP Multicast

UDP

· In progress:

Shared memory

Systran Scramnet reflective memory

VME

· Planned:

ATM

 IEEE 1394

Fibre Channel

VIA

	(3) Do client requests have an associated priority so that the server can respond to the client request accordingly?
	· Priority is inherited from user thread.

· The client thread priority is respected and propagated in both local and remote invocations per the OMG Real-Time CORBA 1.0 specification.

	(4) Global recognition and communication of priority
	Yes

	(5) Does the ORB have features that contribute to the desired system level deterministic behavior [beyond requirements noted]?
	· The RT versions provide for the predictable pre-allocation, allocation, reuse, and priority respecting protection of resources.

Table 3-2 Responses to Vendor Self-Assessments Against RT TWG Requirements (2 of 3)

	Requirement
	ORBexpress RT

	(5) continued
	· Each component was implemented with predictability and priority management as a prime design goal.

· ORBs are designed to scale gracefully and predictably to large numbers of servants (CORBA objects), threads, interfaces, operations, and data volume.

· Uses a deterministic marshalling mechanism that both scales well to multi-megabyte invocations and uses memory in a predictable fashion.

· Includes a highly predictable, scalable request demultiplexing implementation.

	(6) Does the ORB support bypassing the marshal/de-marshaling of data when the communication is between objects that are coded in the same language and running in the same process?
	Yes

	(7) Does ORB provide the ability to use Quality of Service (QoS) capabilities to provide Guaranteed QoS as defined in IETC RFC 2212?
	The replaceable transport feature of the RT versions of ORBexpress provides for the definition and use of transport specific QoS. This feature and other controls within the ORB allow the application engineer to select the appropriate quality of service for each request.

	(8) Asynchronous Message Architecture
	Yes;

	(9) Does the ORB provide mechanisms to avoid priority inversion in ORB operations?
	RT version of ORBexpress provides special mutex implementations for the protection of ORB and application level resources that avoid both local and distributed priority inversions. These special mutexes are appropriately applied in the ORBexpress RT ORB implementation along with internal algorithms and architectures designed to avoid or bound priority inversions and avoid priority-related deadlock.

Table 3-2 Responses to Vendor Self-Assessments Against RT TWG Requirements (3 of 3)

	Requirement
	ORBexpress RT

	(10) Reliable/unreliable unicast and multicast implemented such that end-to-end latency, latency jitter, and CPU at endpoints scales no worse than linearly with both endpoint load and system-wide traffic
	Achievable through transport customization

	(11) Memory footprint ... needs to be as small as possible**
	The 2.3 version of ORBexpress RT for C++ is 100K bytes of PowerPC object code for the entire ORB. The RT segmentation features allow configurations to remove up to one third of this size. In addition, the ORBexpress IDL compiler is designed to generate memory efficient application code. Future revisions will introduce additional features for memory conservation.

The 2.3 version of ORBexpress for Ada is approximately 2M bytes of PowerPC object code for the full ORB. Future versions of the Ada ORB will introduce segmentation features and will significantly reduce the ORB footprint.

	(12) Does the ORB provide support for persistent bindings?
	Known endpoints can be supplied.

	(13) Scalability
	Scalable for:

· Large sized objects

· Large #’s of objects

· Large #’s of operations

· Large #’s of interfaces

· Large #’s of threads

· Large #’s of clients

· Large #’s of servants

