

JCSS

Model Development Guide (MDG)

Version 4.0

Contract DASW01 03 D 0008

Disclaimer: As of October 2007, NETWARS was redesignated by the Program Manager Office as the Joint
Communications Simulation System (JCSS). JCSS was selected as the new industry name to better reflect the
inherent joint communication capabilities of the software. Users should be aware that no software updates were
conducted as part of the software name change.

July, 2009

Prepared for: Prepared by:
Defense Contracting Command - OPNET Technologies, Inc.
Washington Bethesda, MD 20814-7904
Washington, DC 20310-5200

JCSS MODEL DEVELOPMENT GUIDE V4.0

 ii

TABLE OF CONTENTS

1 EXECUTIVE OVERVIEW ... 1-1

1.1 PURPOSE OF THIS DOCUMENT .. 1-1

1.2 BENEFITS OF MAKING A JCSS-COMPLIANT MODEL ... 1-1

1.2.1 Leveraging a Standard Modeling Framework ... 1-1

1.2.2 Use of Full JCSS Functionality.. 1-2

1.3 MODELING BASICS ... 1-3

1.3.1 Defining the Purpose.. 1-3

1.3.2 Determining Model Requirements... 1-4

1.3.3 Surveying Existing Models.. 1-4

1.3.4 Developing the Model.. 1-5

1.4 HOW TO USE THIS DOCUMENT ... 1-6

2 TECHNICAL OVERVIEW... 2-1

2.1 INTRODUCTION TO JCSS MODELS .. 2-2

2.1.1 Goals of Model Development.. 2-2

2.1.2 JCSS Application Architecture .. 2-3

2.1.3 JCSS/OPNET Model Hierarchy .. 2-9

2.2 MODEL DEVELOPMENT LIFE CYCLE... 2-16

2.2.1 Model Development Roles and Responsibilities ... 2-16

2.2.2 Model Development Activities .. 2-17

3 JCSS MODEL DEVELOPMENT... 3-1

3.1 TRAFFIC MODEL DEVELOPMENT PROCESS.. 3-1

3.1.1 IERs.. 3-2

3.1.2 Operational Element .. 3-4

3.1.3 System Element ... 3-5

3.1.4 OE – SE Interaction ... 3-5

3.1.5 DoDAF Integration .. 3-6

3.2 COMMUNICATIONS DEVICE AND PROCESS MODEL DEVELOPMENT PROCESS 3-7

3.2.1 Development Approaches.. 3-8

3.2.2 Modifying the Existing OPNET Model to Be JCSS Compatible 3-8

3.2.3 Surrogating From the Existing JCSS Model.. 3-9

3.2.4 Developing a New Model .. 3-9

3.3 MODEL INTEROPERABILITY ISSUES .. 3-10

3.3.1 Compatibility Issues... 3-10

3.3.2 Interfacing Issues ... 3-12

3.3.3 Communication Aspects .. 3-14

3.3.4 Self-Description Issues .. 3-17

3.3.5 Versioning Issues ... 3-18

3.4 JCSS CAPACITY PLANNING COMPLIANCE REQUIREMENTS 3-19

3.4.1 Factors of Interest during Analytical Modeling in Capacity Planning 3-19

3.4.2 Handling CP Routing... 3-19

3.4.3 Logical Views .. 3-22

3.4.4 Handling Models Modifying Message Sizes ... 3-23

3.4.5 Handling Specific Port Selection for Alternate Links Selection in the CP.. 3-23

JCSS MODEL DEVELOPMENT GUIDE V4.0

 iii

3.5 METHODOLOGIES FOR CREATING DEVICES FOR JCSS WITH DEVICE CREATOR........ 3-24

3.5.1 Model Names ... 3-27

3.5.2 Creating a Custom Device ... 3-28

3.6 COMPLIANCE FOR END-SYSTEM DEVICES .. 3-29

3.6.1 Attributes.. 3-30

3.6.2 Self Descriptions.. 3-30

3.6.3 Required Modules.. 3-31

3.6.4 End-System Devices Categories .. 3-34

3.6.5 Interfaces and Packet Formats ... 3-35

3.6.6 Interfacing with Other Classes... 3-35

3.6.7 Creating Custom Transport Protocols for End-Systems.............................. 3-37

3.6.8 Handling Failure/Recovery.. 3-38

3.6.9 Collecting Statistics ... 3-38

3.6.10 JCSS Standard SE Models ... 3-39

3.6.11 Example: Constructing a Computer Model ... 3-40

3.7 COMPLIANCE FOR LAYER 1 NETWORKING EQUIPMENT .. 3-41

3.7.1 Attributes.. 3-41

3.7.2 Required Modules.. 3-41

3.7.3 Interfacing with Devices .. 3-42

3.7.4 Handling Background Traffic .. 3-42

3.7.5 Handling Failure/Recovery.. 3-42

3.7.6 Collecting Statistics ... 3-43

3.7.7 Example: Constructing an Encryptor Model ... 3-43

3.8 COMPLIANCE FOR LAYER 2 NETWORKING EQUIPMENT .. 3-44

3.8.1 Attributes.. 3-44

3.8.2 Required Modules.. 3-44

3.8.3 Initialization ... 3-45

3.8.4 Interfacing with End-System Devices and Networking Equipment 3-46

3.8.5 Supported Protocols ... 3-46

3.8.6 Handling Failure/Recovery.. 3-46

3.8.7 Collecting Statistics ... 3-47

3.8.8 Example: Constructing a Multi-Service Switch .. 3-47

3.9 COMPLIANCE FOR LAYER 3 NETWORKING EQUIPMENT .. 3-48

3.9.1 Attributes.. 3-48

3.9.2 Required Modules.. 3-48

3.9.3 Handling Security Classification ... 3-50

3.9.4 Interfacing with End-System Devices and Networking Equipment 3-50

3.9.5 Supported Protocols ... 3-51

3.9.6 Creating Custom Routing Protocols for IP .. 3-51

3.9.7 Handling Failure/Recovery.. 3-53

3.9.8 Collecting Statistics ... 3-54

3.10 COMPLIANCE FOR DEVICES WITH CIRCUIT-SWITCHED TECHNOLOGY 3-55

3.10.1 Attributes.. 3-55

3.10.2 Initialization ... 3-55

3.10.3 Routing in Circuit-Switched Devices .. 3-56

3.10.4 Circuit-Switched Links .. 3-56

JCSS MODEL DEVELOPMENT GUIDE V4.0

 iv

3.10.5 Interfacing with Packet-Switched Networks ... 3-56

3.10.6 Handling Failure/Recovery.. 3-57

3.10.7 Collecting Statistics ... 3-58

3.11 COMPLIANCE FOR WIRELESS INTERFACES .. 3-59

3.11.1 Attributes.. 3-59

3.11.2 Required Modules.. 3-61

3.11.3 Initialization ... 3-61

3.11.4 Interfacing with Other Classes... 3-61

3.11.5 Interfacing with TIREM .. 3-62

3.11.6 Restrictions in Building Radio Devices... 3-62

3.11.7 Handling Failure/Recovery.. 3-63

3.11.8 Collecting Statistics ... 3-63

3.11.9 Building Custom Pipeline Stages... 3-63

3.11.10 Satellite Considerations ... 3-63

3.11.11 JCSS Standard Geostationary Satellite Communications System Models3-64

3.11.12 Generic Satellite Device Model (for Bent Pipe Links)............................ 3-65

3.11.13 Generic Satellite Ground Terminal Device Model (for Bent Pipe Links)3-65

3.11.14 TSSP Satellite Terminal Device Model ... 3-65

3.11.15 Broadcast Radio Considerations .. 3-65

3.11.16 EPLRS Radio Considerations .. 3-66

3.12 COMPLIANCE FOR LINK MODELS.. 3-69

3.12.1 Attributes.. 3-69

3.12.2 Building Custom Pipeline Stages... 3-70

3.12.3 Handling Background Routed Traffic ... 3-71

3.12.4 Handling Failure/Recovery.. 3-71

3.12.5 Building Simplex Links, Buses, and Bus Taps.. 3-71

3.12.6 Collecting Statistics ... 3-71

3.12.7 Documentation... 3-72

3.13 COMPLIANCE FOR UTILITY NODES ... 3-73

3.13.1 Attributes.. 3-73

3.13.2 Self Description ... 3-73

3.13.3 Required Modules.. 3-73

3.13.4 Interfacing with Other Classes... 3-73

3.13.5 Interfacing with the Scenario Builder GUI.. 3-74

3.14 API AND FRAMEWORK ... 3-75

3.14.1 Generic Circuit GUI API ... 3-75

3.14.2 IP Auto Addressing.. 3-78

3.14.3 Hybrid API... 3-78

3.14.4 Link Deployment Wizard .. 3-79

3.14.5 Broadcast Network Framework ... 3-80

3.14.6 Wireless Configuration Node .. 3-82

4 EXAMPLES .. 4-1

4.1 TRAFFIC MODEL EXAMPLE... 4-2

4.2 ROUTING PROTOCOL EXAMPLE .. 4-4

4.2.1 High-Level Design... 4-4

4.2.2 Interfacing with the IP Discussion... 4-6

JCSS MODEL DEVELOPMENT GUIDE V4.0

 v

4.2.3 Notes .. 4-12

4.3 WIRED END DEVICE EXAMPLE ... 4-14

4.3.1 Problem Statement ... 4-14

4.3.2 High-Level Design... 4-14

4.3.3 Detailed Design: Event Response Table.. 4-15

4.3.4 Implementation .. 4-21

4.4 WIRED END DEVICE EXAMPLE 2 .. 4-28

4.4.1 Overview.. 4-28

4.4.2 Steps... 4-28

4.4.3 Process Model: SE ... 4-31

4.4.4 Statistics ... 4-32

4.5 LAYER 1 DEVICE EXAMPLE: BULK ENCRYPTOR ... 4-33

4.5.1 Overview.. 4-33

4.5.2 Steps... 4-33

4.5.3 Process Model.. 4-33

4.6 LAYER 2 DEVICE EXAMPLE: MULTI-SERVICE SWITCH ... 4-36

4.6.1 Overview.. 4-36

4.6.2 Steps... 4-36

4.6.3 Process Models: Voice Dispatch and Voice Over ATM 4-37

4.7 LAYER 2 DEVICE EXAMPLE: MULTIPLEXER DEVICE USING CIRCUIT API 4-39

4.7.1 Overview.. 4-39

4.7.2 Attributes and Process Model Code... 4-40

4.8 LAYER 3 DEVICE EXAMPLE: CUSTOM ROUTER .. 4-43

4.8.1 Overview.. 4-43

4.8.2 Steps... 4-43

4.8.3 Process Model: Custom Routing Protocol... 4-46

4.9 CIRCUIT-SWITCHED DEVICE EXAMPLE: END SYSTEM .. 4-47

4.9.1 Overview.. 4-47

4.9.2 Steps... 4-47

4.9.3 Process Model: se .. 4-48

4.10 WIRELESS DEVICE EXAMPLE.. 4-51

4.10.1 Overview.. 4-51

4.10.2 Steps... 4-51

4.10.3 SE Process Model .. 4-53

4.11 WIRELESS DEVICE EXAMPLE 2 ... 4-54

4.11.1 Problem Statement ... 4-54

4.11.2 High-Level Design... 4-54

4.11.3 fwd module: Detailed Design .. 4-55

4.11.4 mac Module ... 4-57

4.11.5 se Module... 4-58

4.11.6 Addressing and Other Issues.. 4-61

4.11.7 Optimization and Efficiency Considerations ... 4-61

4.12 SATELLITE TERMINAL GENERIC EXAMPLE ... 4-63

4.12.1 Node Model Contents .. 4-63

4.12.2 Core Self-Description Attributes ... 4-63

4.12.3 Additional Attributes ... 4-63

JCSS MODEL DEVELOPMENT GUIDE V4.0

 vi

4.12.4 Antenna Aim Process... 4-65

4.12.5 Description of Antenna Aim Process... 4-65

4.13 SATELLITE TERMINAL WITH TSSP EXAMPLE ... 4-66

4.13.1 Overview.. 4-66

4.13.2 Node Model Contents .. 4-66

4.13.3 Core Self-Description Attributes ... 4-67

4.13.4 Additional Attributes ... 4-67

4.13.5 Node Model Specific Configuration.. 4-68

4.13.6 TSSP Process ... 4-72

4.13.7 Key Code Snippets from TSSP Process... 4-74

4.14 SATELLITE GENERIC EXAMPLE... 4-77

4.14.1 Overview.. 4-77

4.14.2 Node Model Contents .. 4-77

4.14.3 Additional Attributes ... 4-77

4.14.4 Satellite Switch Process ... 4-80

4.15 LINK MODEL EXAMPLE .. 4-83

4.15.1 Overview.. 4-83

4.15.2 Steps... 4-83

4.15.3 Pipeline Stage: txdel .. 4-83

4.16 UTILITY NODE EXAMPLE.. 4-85

4.16.1 Overview.. 4-85

4.16.2 Details .. 4-85

4.16.3 Process Model.. 4-85

4.17 CONVERTING A DEVICE MODEL FROM THE OPNET STANDARD MODEL LIBRARY .. 4-87

4.17.1 Overview.. 4-87

4.17.2 Details .. 4-87

4.18 CP MODEL EXAMPLE .. 4-91

4.18.1 Overview.. 4-91

4.18.2 CP Implementation .. 4-91

5 VERIFICATION AND VALIDATION.. 5-1

5.1 MODEL FUNCTIONAL V&V .. 5-2

5.1.1 Objectives .. 5-2

5.1.2 Steps... 5-2

5.2 JCSS COMPLIANCE V&V ... 5-4

5.2.1 JCSS Model Development Checklist... 5-4

5.2.2 JCSS Static Testing.. 5-4

5.2.3 JCSS Equipment String.. 5-5

5.2.4 Capacity Planner .. 5-6

5.2.5 DoD/Joint VV&A Documentation Tool (DVDT/JVDT) 5-6

APPENDIX A: ACRONYMS ...1

APPENDIX B: GLOSSARY...3

APPENDIX C: ENUMERATED VALUES...4

APPENDIX D: PACKET FORMATS ...5

JCSS MODEL DEVELOPMENT GUIDE V4.0

 vii

APPENDIX E: STANDARD OPNET INTERFACES AND PACKET FORMATS...............6

APPENDIX F: INTERFACE CONTROL INFORMATION (ICI) FORMATS.....................9

APPENDIX G: MODELING FILE FORMATS ..10

APPENDIX H: OTHER FILE FORMATS...10

APPENDIX I: MEASURES OF PERFORMANCE IN JCSS...11

APPENDIX J: NODE MODEL DOCUMENTATION..19

APPENDIX K: MODEL NAMING CONVENTIONS ..21

APPENDIX L: JCSS SIMULATION API AND HELPER FUNCTIONS.............................23

APPENDIX M: ATTRIBUTE TYPE DEFINITIONS ...24

APPENDIX N: EXAMPLES OF JCSS MODELS ...26

APPENDIX O: JCSS DOCUMENTATION SET...31

APPENDIX P: CREATING MODEL REPOSITORIES IN JCSS...31

APPENDIX Q: TROUBLESHOOTING JCSS SIMULATION ...32

APPENDIX R: FREQUENTLY ASKED QUESTIONS..32

APPENDIX S: FUNCTIONAL ENHANCEMENTS FROM EARLIER JCSS VERSIONS34

APPENDIX T: SELF-DESCRIPTION GUIDELINES..37

APPENDIX U: IP AUTO ADDRESSING IN CUSTOM MODELS.......................................39

APPENDIX V: REFERENCES..41

APPENDIX W: JCSS MODEL DEVELOPMENT GUIDE CHECKLIST...........................42

JCSS MODEL DEVELOPMENT GUIDE V4.0

 viii

LIST OF FIGURES

Figure 2-1: A Repeatable Process.. 2-2

Figure 2-2: A Model of a Repeatable Process ... 2-3

Figure 2-3: The JCSS Architecture.. 2-4

Figure 2-4: Sample JCSS Scenario—the Network-Level Model 2-5

Figure 2-5: Editing Device Attributes.. 2-6

Figure 2-6: An Example of the Statistics Available in DES.. 2-7

Figure 2-7: The JCSS/OPNET Model Hierarchy .. 2-9

Figure 2-8: Editing a JCSS Cisco 2514 Router Model .. 2-11

Figure 2-9: The Process Models Within the PRC Radio Model.................................... 2-12

Figure 2-10: The Process Model Editor... 2-13

Figure 2-11: Editing C Code in the Process Model Editor .. 2-14

Figure 2-12: Receive Pipeline Stages .. 2-15

Figure 2-13: JCSS Model Development Life Cycle .. 2-16

Figure 3-1: IER Demand Model Attributes ... 3-3

Figure 3-2: IER Thread Information Attributes... 3-4

Figure 3-3: Node Model with SE modules .. 3-5

Figure 3-4: OE-SE Interaction ... 3-6

Figure 3-5: Viewing the DoDAF Information Attribute.. 3-7

Figure 3-6: High-Level Model Development Process ... 3-8

Figure 3-7: Protocol Dependency (e.g., Ethernet Computer Model)............................. 3-11

Figure 3-8: Module-Wide Memory (e.g., Ethernet Computer Model) 3-13

Figure 3-9: Declaration of Global Variable in Two Process Header Blocks................. 3-14

Figure 3-10: Default Interrupt Handling.. 3-16

Figure 3-11: Self-Description Port Objects ... 3-18

Figure 3-12: CP Layers.. 3-20

Figure 3-13: Example Logical View.. 3-23

Figure 3-14: Create Custom Device Dialog... 3-27

Figure 3-15: An Ethernet End-System Device—Node Model 3-32

Figure 3-16: End-System Device with Frame Relay as the MAC Technology—Node Model

.. 3-33

Figure 3-17: A Valid End-System to End-System Connection 3-34

Figure 3-18: Example of a Circuit-Switched End-System Device—Node Model 3-35

Figure 3-19: Example of a Circuit-Switched End-System Device That Handles Voice

Applications As Well As Voice IERs.. 3-35

Figure 3-20: Remote Interrupt from the OE to the SE... 3-36

Figure 3-21: Example of Layer 1 Networking Equipment—Node Model 3-41

Figure 3-22: Example of Layer 2 Networking Equipment—Node Model 3-45

Figure 3-23: Example of Layer 3 Networking Equipment—Node Model 3-49

Figure 3-24: Networks with Different Security Classification Levels 3-50

Figure 3-25: Circuit-Switched and Packet-Switched Network Intercommunication 3-57

Figure 3-26: Example of a Radio End-System Device—Node Model.......................... 3-61

Figure 3-27: An ATM Device with a Radio Interface... 3-62

Figure 3-28: Internal Representation of an ATM Device and Intermediate Node 3-63

Figure 3-29: (Channel) Table... 3-66

JCSS MODEL DEVELOPMENT GUIDE V4.0

 ix

Figure 3-30: EPLRS ENM System Parameters Attribute.. 3-68

Figure 3-31: Path Port Associations Diagram ... 3-76

Figure 3-32: Circuit Interface Module Port Configuration Table.................................. 3-78

Figure 3-33: Explicit Traffic.. 3-79

Figure 3-34: Hybrid Traffic ... 3-79

Figure 3-35: Link Deployment Wizard Dialog.. 3-80

Figure 3-36: Wireless Configuration Node Modification of BER................................. 3-83

Figure 4-1: Time Sequence Diagram Example.. 4-2

Figure 4-2: Sample Layer 3 Networking Equipment... 4-5

Figure 4-3: IP Routing Parameters Attribute ... 4-9

Figure 4-4: Interface Information Attribute... 4-10

Figure 4-5: Routing Protocol Attribute Properties... 4-10

Figure 4-6: End-Device Node Model .. 4-15

Figure 4-7: Interfacing Modules of “se”.. 4-16

Figure 4-8: High-Level Functions of the “se_tcp” Module ... 4-17

Figure 4-9: se_trafgen Process Model ... 4-21

Figure 4-10: Open Connection State.. 4-21

Figure 4-11: Receive Traffic State... 4-23

Figure 4-12: Process Message State .. 4-24

Figure 4-13: IER Handling State ... 4-26

Figure 4-14: Failure State .. 4-27

Figure 4-15: Ethernet_wkstn_adv—Node Model.. 4-29

Figure 4-16: Computer—Node Model... 4-30

Figure 4-17: Sample Workflow Diagram for SE Process Model 4-31

Figure 4-18: Process Model for the SE Module in the Computer 4-32

Figure 4-19: Sample Code 1—Inform OE of the IER Failure, Which Will Then Record the

Statistics ... 4-32

Figure 4-20: Encryptor—Node Model... 4-33

Figure 4-21: Data Flow for an Encryptor .. 4-34

Figure 4-22: Process Model for Encryptor .. 4-34

Figure 4-23: Sample Code 2—Encrypting a Packet .. 4-35

Figure 4-24: Atm_uni_dest_adv Switch—Node Model .. 4-36

Figure 4-25: Multi-Service Switch—Node Model .. 4-37

Figure 4-26: Custom Multiplexer Node Model ... 4-39

Figure 4-27: Circuit Configuration Table .. 4-40

Figure 4-28: Port Configuration Table .. 4-41

Figure 4-29: CS_1005_1s_e_sl_adv Router—Node Model .. 4-44

Figure 4-30: Router with Custom Routing Protocol—Node Model.............................. 4-45

Figure 4-31: Process Model for a Custom Routing Protocol... 4-46

Figure 4-32: Phone—Node Model... 4-47

Figure 4-33: Data Flow for a Phone .. 4-49

Figure 4-34: Process Model for the SE Module .. 4-50

Figure 4-35: wlan_station_adv—Node Model .. 4-51

Figure 4-36: Radio SE model—Node Model .. 4-52

Figure 4-37. Radio End Device Node Model .. 4-54

Figure 4-38: fwd Module Process Model .. 4-56

JCSS MODEL DEVELOPMENT GUIDE V4.0

 x

Figure 4-39: SE Module Interfaces.. 4-58

Figure 4-40: Radio SE Process Model... 4-59

Figure 4-41: Generic Satellite Terminal .. 4-63

Figure 4-42: Antenna Aim Process.. 4-65

Figure 4-43: TSSP Satellite Terminal.. 4-67

Figure 4-44: Example Configuration—TSSP Nodal Terminals – Channel Config – Downlink

Example ... 4-69

Figure 4-45: Example—Circuit Configuration – Source ports...................................... 4-70

Figure 4-46: TSSP Process Model... 4-72

Figure 4-47: Uplink and Downlink Tables .. 4-79

Figure 4-48: Satellite Switch Process Model... 4-80

Figure 4-49: Sample Code 3—Adding Signaling Overhead to the Transmission Delay4-83

Figure 4-50: Wireless Configuration Utility Node—Node Model 4-85

Figure 4-51: Wireless Configuration Object—Process Model...................................... 4-86

Figure 4-52: Wireless Configuration Object—Sample Code .. 4-86

Figure 4-53: Sample Node Model.. 4-87

Figure 4-54: Selecting “Computer” for equipment_type... 4-88

Figure 4-55: Adding se_tcp and se_udp .. 4-88

Figure 4-56: Adding the net_id Extended Attribute .. 4-89

Figure 4-57: Equipment type attribute example .. 4-91

Figure 4-58: Equipment type attribute example .. 4-92

Figure 4-59: Equipment type attribute example .. 4-93

Figure 4-60: Equipment type attribute example .. 4-94

Figure 5-1: M&S Overall Problem Solving Process.. 5-3

Figure I-1: Enabling IER DES Reporting Capabilities Globally.......................................13

Figure I-2: Enabling IER DES Reporting Capabilities Per-IER..14

Figure I-3: Viewing the IER Reports...15

Figure I-4: Selecting an IER Report ..15

Figure I-5: Enabling Application Delay Tracking Per-IER...17

Figure I-6: Viewing Application Delay Tracking Files...18

Figure O-1: JCSS Documentation Set ...31

Figure T-1: Self-Description Port Objects...38

Figure U-1: Custom IP Auto Address ID Attribute ...40

JCSS MODEL DEVELOPMENT GUIDE V4.0

 xi

LIST OF TABLES

Table 2-1: Model Types and Descriptions... 2-10

Table 2-2: Model Development Activities .. 2-17

Table 3-1: Traffic Model Use Cases .. 3-1

Table 3-2: Properties to Determine CP Layer.. 3-20

Table 3-3: Supported Device Classes .. 3-24

Table 3-4: Device Class Arguments .. 3-28

Table 3-5: JCSS Attributes for an End-System Device ... 3-30

Table 3-6: Higher Layer Modules for an End-System Device 3-31

Table 3-7: Lower Layer Modules for an End-System Device....................................... 3-31

Table 3-8: Interface Modules for an End-System Device ... 3-33

Table 3-9: JCSS SE Process Models ... 3-39

Table 3-10: Attributes for Layer 1 Networking Equipment .. 3-41

Table 3-11: Attributes for Layer 2 Networking Equipment .. 3-44

Table 3-12: Modules Needed for Various Layer 2 Protocols .. 3-44

Table 3-13: Modules Needed by a Multi-Service Switch.. 3-45

Table 3-14: Attributes for Layer 3 Networking Equipment .. 3-48

Table 3-15: Higher Layer Modules for Layer 3 Networking Equipment 3-48

Table 3-16: Required Modules for Various Interface Technologies 3-49

Table 3-17: Interface Modules for Layer 3 Networking Equipment 3-50

Table 3-18: Required Attributes for a Circuit-Switched End-System Device............... 3-55

Table 3-19: Required Attributes for Circuit-Switched Layer 2 Networking Equipment3-55

Table 3-20: Additional Attributes for Radio Devices.. 3-59

Table 3-21: Pipeline Stage Attributes on a Radio Transmitter 3-60

Table 3-22: Pipeline Stage Attributes on a Radio Receiver .. 3-60

Table 3-23: Restrictions in Building Radio Devices ... 3-62

Table 3-24: Required Satellite Device Attributes for Moving Orbits............................ 3-64

Table 3-25: Radio Transceiver Pipeline Stages ... 3-64

Table 3-26: Required Attributes on a Link Model... 3-69

Table 3-27: Required Attributes for Utility Nodes .. 3-73

Table 3-28: Optional Attributes for Utility Nodes... 3-73

Table 4-1: Available IP Common Route Table API Functions 4-11

Table 4-2: Event Description Table... 4-17

Table 4-3: Event Communication Mechanisms... 4-18

Table 4-4: State Description Table .. 4-18

Table 4-5: Event Feasibility Table... 4-19

Table 4-6: Event Response Table .. 4-19

Table 4-7: End-System—Model Attributes ... 4-30

Table 4-8. Circuit-Switched End-System Device—Model Attributes 4-48

Table 4-9. Radio End-System Device—Model Attributes .. 4-52

Table 4-10: Event Response Table for “fwd” Process... 4-56

Table 4-11: Event Response Table for the Radio SE Module 4-58

Table 4-12: Satellite Terminal Settings Table ... 4-70

Table 4-13: Events of the TSSP Process Model .. 4-72

Table 4-14: Events of the Satellite Switch Process Model .. 4-80

JCSS MODEL DEVELOPMENT GUIDE V4.0

 xii

Table A-1: Acronyms ..1

Table C-1: Attributes for Enumerated Data Types ..4

Table D-1: Packet Formats ..5

Table E-1: Interfaces and Packet Formats ...7

Table F-1: Interfaces and Packet Formats ...9

Table G-1: Typed File Attribute ..10

Table H-1: Other File Formats...10

Table I-1: MOPs Reported by OE ...11

Table I-2: Statistics Groups ...12

Table J-1: Wired Interface Specifications..20

Table J-2: Radio Device Interface Specifications..20

Table J-3: Process Models ...21

Table J-4: External Files Needed...21

Table L-1: JCSS APIs and their Locations ..23

Table N-1: List of JCSS Models (Alphabetic)...26

Table R-1: FAQs..32

Table S-1: JCSS Wizards...35

Table T-1: JCSS Port Types and Supported Packet Formats ..38

Table W-1: JCSS Model Development Guide Checklist...42

JCSS MODEL DEVELOPMENT GUIDE V4.0

 1-1

1 EXECUTIVE OVERVIEW

1.1 PURPOSE OF THIS DOCUMENT

The purpose of the JCSS Model Development Guide is to provide modeling guidelines and

standards for creating communications device and traffic models that are interoperable with the

Joint Communication Simulation System(JCSS) System and model suite. The JCSS Model

Development Guide provides the standards for creating JCSS communication device and traffic

models and provides the instructions for modifying existing OPNET commercial off-the-shelf

(COTS) models to adhere to these standards.

This document provides engineers with the information necessary to develop device and traffic

models that interoperate with existing JCSS and OPNET COTS models within the JCSS

modeling framework. Any device model written to these standards will integrate seamlessly with

the existing model libraries and will be able to take advantage of the benefits that the JCSS

modeling environment has to offer.

1.2 BENEFITS OF MAKING A JCSS-COMPLIANT MODEL

JCSS is a communications system simulation tool. Its primary purpose is to evaluate strategic,

operational, and tactical communications networks before they are developed, deployed, or

modified in order to provide early feedback to decision makers. JCSS leverages COTS software

that models commercial communications networks and adds military-specific device, protocol,

and application models to provide a complete environment for modeling military

communications networks.

The following sections detail the benefits that this common simulation framework provides over

traditional, stovepipe methods.

1.2.1 Leveraging a Standard Modeling Framework

Many modeling efforts throughout the Department of Defense (DoD) have been undertaken in a

standalone manner, with little attempt being made to reuse models or integrate with existing

work. The lack of standardization within the modeling community makes it difficult to reuse

existing component parts. The use of a common simulation framework such as JCSS imparts

some standardization to these modeling efforts and promotes model reuse.

One of the benefits of a common framework is the guarantee that all models built to that

specification will work together in an integrated fashion. This increases efficiency and drives

down costs in multiple ways:

Eliminates Redundant Modeling Efforts: Engineers embarking on a new modeling project

are able to reuse existing device models, knowing that they are interoperable with new

models built to the same specification. This reduces or eliminates the need to produce

multiple models of the same devices to work in varying simulation environments, thus

reducing program cost and overall cost to the Government.

JCSS MODEL DEVELOPMENT GUIDE V4.0

 1-2

Provides a Baseline for Comparative Analysis: A repeatable set of inputs and constraints

is central to an effective modeling exercise. By using a standardized set of models,

engineers can control the variables that go into a simulation and ensure that any measured

differences in results are due to intentional changes in inputs. This ensures valid

comparisons of devices or other variables, which is especially valuable when performing

comparisons of new technologies from multiple vendors.

1.2.2 Use of Full JCSS Functionality

Models built according to the guidelines outlined in this JCSS Model Development Guide are

interoperable not only with other models developed using these standards but also with the

majority of the OPNET Standard Library (COTS) device models. In this way, the models are

able to take advantage of many years of commercial development and model testing by

leveraging the OPNET COTS Standard and Specialized model library. This library includes

intrinsic capabilities for common communication modeling issues such as traffic generation,

dynamic routing, and connection establishment. The library also contains a wealth of standard

protocol models such as:

• Ethernet, Asynchronous Transfer Mode (ATM), frame relay, Fiber Distributed Data

Interface (FDDI), token ring, Digital Subscriber Line (DSL)

• Transmission Control Protocol (TCP)/Internet Protocol (IP), User Datagram Protocol

(UDP)

• Routing Protocols such as Routing Information Protocol (RIP), Open Shortest Pathway

Forwarding (OSPF), Extended Interior Gateway Routing Protocol (EIGRP), Interior

Gateway Routing Protocol (IGRP), Border Gateway Protocol (BGP)

• Application Layer Protocols such as File Transfer Protocol (FTP), and Hypertext

Transport Protocol (HTTP)

• Wireless Protocols such as Wireless Fidelity (WiFi) and Worldwide Interoperability for

Microwave Access (WiMax); Mobile Ad Hoc Network (MANET) protocols such as

Optimized Link State Routing (OLSR), Ad Hoc On-Demand Distance Vector (AODV),

and Temporally Oriented Routing Algorithm (TORA).

For a more complete list of protocol models, refer to OPNET Modeler online documentation.

In addition, JCSS provides access to customized capabilities that do not exist in COTS products.

These capabilities include a large military-specific device library, customized reporting, and

specialized traffic-handling techniques. Some of the available models are shown in the list

below. A full, up-to-date list can be found in Appendix N.

Device and protocol models available in JCSS include but are not limited to the following:

• Encryptors: KIV and KG-series

• Gateways: Juniper CTP, Media Gateway (PSTN to VoIP, VoATM), N.E.T. SCREAM

and SHOUTip

• Muliplexers: Prominas, FCC-100

• Satellites and Earth Terminals: AN/TSC series, Standardized Tactical Entry Point

(STEP), Teleport, Global Broadcast Service (GBS), UHF DAMA

JCSS MODEL DEVELOPMENT GUIDE V4.0

 1-3

• Transport Devices and Protocols: Performance Enhancing Proxy (PEP) with SCPS-TP

(TAO)

• Tactical Radio Systems: PRC Radios (Falcon II, HAVEQUICK, MBITR), EPLRS,

Link-11, Link-16, AN/PSC-5, TRC-170, AN/ARC

• Tactical Voice and Circuit Switches: AN/TTC series, Switch Multiplexer Unit (SMU),

Digital Non-Secure Voice Terminal (DNVT), Secure Telephone Units III (STU-III)

• Voice over IP (VoIP): H.323, H.323 Border Element, H.323 Gatekeeper, SIP, SIP Proxy

Server, VoIP Phone

More information can be found at the following websites:

• JCSS Program Office Website: http://www.disa.mil/jcss/index.html

• JCSS Technical Support Website: http://www.jcss.disa.mil

1.3 MODELING BASICS

JCSS is a communications system simulation tool made up of three primary simulation

technologies — Discrete Event Simulation (DES), Capacity Planner (CP), and Flow Analysis

(FLAN). CP is a customized analytic approach, implemented specifically for JCSS. By

convention, models developed for the JCSS environment usually support both modeling

technologies.

DES provides an explicit, packet-by-packet simulation of network traffic for the system being

modeled. It is extremely detailed and can provide results at a high level, such as time-varying

link utilizations, all the way down to very granular measurements such as queue lengths on

individual routers or wireless communication effects. Additionally, because JCSS ships with the

full source code to both the OPNET Standard Library (COTS) and JCSS model libraries, model

developers can extend the models to add their own statistics or other custom behaviors.

CP provides a broader look into network behavior. Typically, it is used to study utilization and

configuration validation as it supports many of the JCSS devices. Users are encouraged to run a

CP analysis before investing larger amounts of time for DES as CP provides the user with high

level web reports showing the basic health of the network. However, if the user needs more

detailed protocol level information DES should be used instead.

FLAN is an OPNET tool that works similarly to CP. However, the feature is different in that it is

an analytical simulation that can utilize protocols such as IP to route traffic. The engine can also

provide additional network statistics such as delay and jitter, among others. Refer to the

Standard OPNET Documentation for more information on FLAN.

1.3.1 Defining the Purpose

The first and most critical issue to be addressed when undertaking a modeling project is

identifying the reason(s) behind the use of the model. Any modeling project that begins with the

thought “I will build a model first and figure out what I want to use it for later” is destined to fail.

The best way to determine the purpose of the model is by asking “What specific question(s) do I

JCSS MODEL DEVELOPMENT GUIDE V4.0

 1-4

want this model to answer for me?” Following are examples of specific, purpose-driven

questions:

• What will be the impact on end-to-end message delays when I replace my existing Media

Access Control (MAC) layer with a new implementation?

• Will the new routing protocol “X” be interoperable with other protocols in use on my

network? Will I be able to redistribute routes between these networks?

Once these questions have been answered, the features of the device/system to be modeled that

are pertinent to the study can be identified. This will then allow the identification of features or

behaviors of the device that need to be built into the model.

1.3.2 Determining Model Requirements

To develop a model of a communications device, system, or application, there must be a working

knowledge of the features that device or system supports. In the case of a communications

device, this includes supported protocols, performance specifications, and any known limitations

about, or criteria for, its interactions with other devices. For example, a radio that needs to be

part of a slot selection mechanism of a network comprised of one or more radios will have

additional interoperability requirements.

Some of this material is readily available in vendor specification sheets or documents issued by

standards bodies such as Institute of Electrical and Electronics Engineers (IEEE). Another useful

source of material is actual performance data from a Testing and Evaluation (T&E) or production

environment. The use of empirical data to validate the behavior of the model can be invaluable.

For example, routing convergence data from a live device can be used to validate a routing

protocol whose model is being developed.

It is equally important, however, that the relevance of these behaviors is known. For example,

many devices send out periodic messaging information (data packets) to communicate with the

rest of the network. This data does not materially impact the device’s behavior, and as such, if

the amount of this traffic is deemed to be small, it may be ignored or “abstracted away” in the

context of the model, simplifying the modeling effort with no significant loss of accuracy.

Similarly, it is often not necessary to know the inner workings of a cryptographic or other

processing algorithm, for example, to build a behavioral model of such a device. If the purpose

of the study is to measure network capacities, then modeling the overhead capacity incurred as a

result of encryption is sufficient. The exact encryption algorithm itself does not need to be

modeled.

1.3.3 Surveying Existing Models

Once the model requirements have been identified, the next task is to determine whether an

existing model possesses some or all of the needed capabilities. Depending on the output of

previous modeling projects, a model may exist that has the necessary functionality and, through

configuration and without code modification, can be made to satisfy the specific requirements.

This is known as model surrogation. Model surrogation is an area where the common modeling

framework and modeling standardization proves its worth. A community-wide library of models

JCSS MODEL DEVELOPMENT GUIDE V4.0

 1-5

that function in well-defined, interoperable ways can greatly reduce time and costs associated

with model development.

Even when a pre-existing model does not serve all of the needs of a new project, in many cases it

can be used as a starting point for a new model. The JCSS environment supports model

derivation, which is the process of using an existing model as a baseline set of functionalities and

adding/modifying just those that are new or different from the baseline set. In this way,

improvements to the base (COTS or custom) model will be inherited by the derived model,

reducing configuration management (CM) costs.

Finally, even when model derivation is not an appropriate solution, it is normally advantageous

to use existing models as a starting point. Models of a similar class (e.g., transport devices, end

devices, routers, switches) often provide similar functionality that can be modified through code

enhancements to meet the specified need.

All of these examples of model and code re-use are only possible when a set of standards is

defined and followed. This document defines that set of standards for the JCSS environment and

helps to determine when each of the above approaches is suitable for a specific project.

1.3.4 Developing the Model

Sometimes there is no alternative but to develop a new model. In such cases, this JCSS Model

Development Guide takes on greater importance.

There are a number of things that differentiate JCSS models from OPNET Standard models. A

few of the primary differences are listed below; the rest of this document is devoted to

explanations of how to ensure that these differences are accounted for and implemented in such a

way that the resulting model is truly interoperable with other models within the JCSS

framework. Full explanations of these differences, and how to interact with them, are provided in

Section 3.

Primary differences between JCSS models and OPNET Standard models include the following:

IER Support. JCSS provides support for handling Information Exchange Requirements

(IER), the doctrinally approved specification of traffic load for communications

scenarios. Those devices that are planned as sources or sinks of traffic must be capable of

generating and receiving these constructs.

CP Support. This analytical simulation technology is custom built to handle the JCSS

circuit-switched modeling construct and to allow capacity planning workflows that

include wireless devices. Many JCSS models operate in both the DES and CP, but it

should be noted that not all JCSS models work in both environments. Certain models are

designed exclusively for DES as they are complex and detailed models. Conversely,

other models are designed as high level planning models, and should only be used with

CP as they lack the protocol specific details required by DES. For more information on

supported model features, view the Models User Guides included with JCSS.

JCSS MODEL DEVELOPMENT GUIDE V4.0

 1-6

Classification. JCSS models support the notion of classification, which enables military

network planners to build models of different security enclaves.

Interaction with JCSS Model Suites. Newly developed JCSS models must also interact

smoothly with the existing device models and technology frameworks that reside within

JCSS. These include Prominas and other circuit-switched devices, broadcast networks,

Satellite Communications (SATCOM) devices and terminals, and message-based systems

such as Link-16.

JCSS itself does not provide a model-authoring framework. Models for use in JCSS are

developed using the Modeler development environment, a COTS software package produced by

OPNET. This software is not available through the JCSS program office and to acquire it one

must contact OPNET directly (www.opnet.com; 240-497-3000). Once a license is acquired, the

user has the option of using the Modeler development environment in a standalone version or

through the JCSS software. Consult the JCSS User Manual for more information on using

Modeler inside the JCSS software.

Prior to beginning JCSS model development, it is important that the developer is familiar with

the following materials:

• OPNET Modeler

• OPNET Device Creator

• C/C++ development language

• This JCSS Model Development Guide

There are many resources available to help learn about OPNET Modeler and C/C++. In

particular, the OPNET Support Center (http://www.opnet.com/support/index.html) is an

excellent place to obtain a background in using the Modeler framework for model development.

Look especially at the OPNETWORK sessions for detailed information on OPNET

methodologies and user case studies.

1.4 HOW TO USE THIS DOCUMENT

The remainder of this document covers various aspects of JCSS model standards and

interoperability concerns. Code examples are also presented to emphasize the practical

application of the standards described. It may be read as a narrative for an introduction to these

topics or used as a reference guide throughout the design and development process.

The sections and their purposes are listed below:

Section 1: Executive Overview (this section). This section provides an executive-level

overview of JCSS model development and the JCSS Model Development Guide.

Section 2: Technical Overview. This section provides an overview of a model development

process, including information for the Technical Manager to oversee a model

development effort.

Section 3: Model Development. This section provides the technical details of making a

model JCSS compliant.

JCSS MODEL DEVELOPMENT GUIDE V4.0

 1-7

Section 4: Model Development Examples. This section provides additional examples of

model development that go into more detail or cover additional topics.

Section 5: Model Validation and Verification. This section provides detailed technical

specifications about model verification and validation (V&V) for all types of JCSS

models.

Appendices. The appendices provide associated references, such as JCSS Packet Formats,

Frequently Asked Questions (FAQ), and a Model Checklist to support model

development.

This document should be read by program managers, technical managers, model developers,

subject matter experts (SME), and quality assurance engineers (QAE) involved in a modeling

project. Recommended sections for each of these audiences are listed below:

Program Managers. Sections 1 and 2

Technical Managers. Sections 1 and 2 and Subsection 3.1 and 3.2

Model Developers. Sections 1 and 2, followed by Subsections 3.1, 3.2, 3.3, and 3.4. This

should be followed by Section 5, going back to cover the portions in Sections 3 and 4 that

are relevant to the type of device being developed. Finally the developer should return to

Section 5 to cover the portions that are relevant to the device being developed.

SMEs/QAEs. Sections 1, 2, and 5 and Subsection 3.2. The purpose of the document is to

allow a SME to help with the design and verification of a model.

This document is based on JCSS 9.0

JCSS MODEL DEVELOPMENT GUIDE V4.0

2-1

2 TECHNICAL OVERVIEW

To understand the details of developing communications device models, one should be familiar

with JCSS and modeling communications systems.

This section is an overview showing what capabilities exist within a device model and how reuse

is possible in JCSS model development. It is not meant to substitute as an instruction manual for

OPNET Modeler, which already has significant online documentation and technical support

available through OPNET, nor is the JCSS Model Development Guide meant to replace this

documentation or to teach modeling in general. Rather, it is intended to provide additional

information and guidance to enable the model developer to create models capable of proper

interaction with the rest of the JCSS model library. Such models are termed JCSS-compliant

models.

This section summarizes the following topics:

• The purpose and steps of modeling

• JCSS software and communications network modeling

• Types of JCSS models and the OPNET model hierarchy

• Methods for creating JCSS device models

• The model development process

JCSS MODEL DEVELOPMENT GUIDE V4.0

2-2

2.1 INTRODUCTION TO JCSS MODELS

2.1.1 Goals of Model Development

The entire modeling enterprise is based on one fundamental assumption, which is much like

Newtonian determinism. We must assume that the important processes governing the system to

be modeled are repeatable and, more important, obey the laws of nature. A system has inputs (or

preconditions) and a process that follows some rules and produces outputs (the post conditions).

This high-level view allows engineers to model a system (or process) and predict its performance

(see Figure 2-1).

ProcessRules

Preconditions

Post

Conditions

Figure 2-1: A Repeatable Process

The modeling discipline involves capturing the rules of a repeatable process, simulating the

process, and performing experiments on the simulated system. For example, to simulate the

movement of the planets around the Sun, the rules are Newton’s laws of motion and gravity. To

predict the future position of the planets, a study analyst captures the inputs to the system and

runs a simulation. In this case, the inputs are the mass, velocity, and current position of the

planets and the Sun. The simulation will then process the inputs according to the rules and

produce the outputs (see Figure 2-2).

JCSS MODEL DEVELOPMENT GUIDE V4.0

2-3

Simulated ProcessModels

Scenario

Results

Figure 2-2: A Model of a Repeatable Process

Before reliance can be placed on the results of a model, the model must be validated. To validate

a model, the inputs and outputs of the simulation are compared to data collected from real-world

observations. Validation is a scientific experiment testing the hypothesis that the model faithfully

captures the salient characteristics of the real-world system. Among other things, the experiment

measures the accuracy of the model. By measuring the outputs of a real system and comparing

them to the outputs of a simulated system, a model tester can determine whether the model can

answer the questions it was intended to answer and for what range of inputs the model is valid.

Without this validation step, results from a simulation should be interpreted with skepticism.

Modeling and simulation are conceptually simple, but the practice of creating models that

correctly answer real-world questions is difficult. This section provides guidance on building

JCSS-compliant communications device models. It describes a process to produce and validate

these device models so they can be integrated into the JCSS simulation environment.

2.1.2 JCSS Application Architecture

JCSS is the DoD Joint Communications Modeling and Simulation tool. The JCSS simulation

environment is a government off-the-shelf (GOTS) solution based on OPNET Technologies IT

Guru commercial technology. JCSS adds five major functions to the OPNET Standard Library

(COTS) product:

1. Military-specific Models (Tactical Radios, Satellites, Encryptors, Multiplexers, etc.)

2. A simple-to-use capacity planning engine that provides analytic simulation

3. Support for DoD Architecture Framework (DoDAF) workflows

4. Usability Enhancements (wizards, reports, PowerPoint briefings)

5. Collaborative Planning workflow for Joint Command, Control, Communications,

Computers, and Intelligence (C4I) planning.

JCSS MODEL DEVELOPMENT GUIDE V4.0

2-4

The majority of JCSS users are analysts. JCSS provides a drag-and-drop graphical user interface

(GUI) to assemble a scenario. The scenario is then input to a simulation. After creating a

scenario, a JCSS user can press a button to simulate the scenario. The results of the simulation

can be viewed within JCSS.

Figure 2-3: The JCSS Architecture

Figure 2-3 illustrates the various JCSS components and how they fit into the modeling and

simulation paradigm. The major components of the JCSS architecture include the following:

• Scenario Builder

• CP

• DES Engine

• JCSS model library, including:

o Device models

o Process models and other modules

o Pipeline stages

o Traffic models.

2.1.2.1 Scenario Builder

The JCSS Scenario Builder is the most recognizable part of JCSS. When most users think of

JCSS, they think of the Scenario Builder. Within the Scenario Builder interface, users drag

models from the palette and place them on the workspace. Links are then made between the

devices, and finally traffic is added to the scenario. Figure 2-4 depicts a sample JCSS scenario.

Scenario Builder

Device Model
Library

OPFAC
Library

Organization
Library

IER Library

• Create OPFACs

• Create Organizations

• Specify Links

• Deploy Traffic (IERs)

• Perform Collaborative
Planning

Discrete Event Simulation

• Run Simulations

• Produce Results

HLA

Capacity Planner

• Run Analysis

• View Web Reports

Results

JCSS MODEL DEVELOPMENT GUIDE V4.0

2-5

Figure 2-4: Sample JCSS Scenario—the Network-Level Model

The Scenario Builder interface allows users to create a scenario using existing device models. By

clicking one of the toolbar buttons, the network can be simulated using either the capacity

planner or the DES engine.

This interface also allows editing device attributes. A good example of this is configuring a

router. The behavior of a router is highly dependent on its configuration. Figure 2-5 shows some

of the detail incorporated into one of the standard JCSS routers. The list of attributes exposed is

defined by the model developer, but the JCSS user is able to change these values to configure the

device for simulation.

JCSS MODEL DEVELOPMENT GUIDE V4.0

2-6

Figure 2-5: Editing Device Attributes

2.1.2.2 Capacity Planner

CP is a JCSS analytic simulation engine. It routes traffic and calculates link and circuit

utilizations. CP is designed to run quickly and be easy to use, and it usually requires little effort

to make models work with CP. CP uses only a handful of device attributes and properties.

Subsection 3.3 describes in detail how to make models work with CP.

2.1.2.3 Discrete Event Simulation

The DES engine is COTS technology available from OPNET. OPNET Modeler and IT Guru use

the same DES engine. DES involves modeling all the individual events in the communications

network. This includes every TCP/IP packet sent, each radio packet sent, and numerous signaling

packets for voice communications. Although the DES engine is highly optimized, DES takes

much longer than CP to simulate the same network. The tradeoff for the longer running times is

that a DES simulation will generate more accurate results.

JCSS MODEL DEVELOPMENT GUIDE V4.0

2-7

In addition, the results can include low-level measurements, such as end-to-end delay (minimum,

maximum, and average), bit error rate, packets sent for each interface on a router, and number of

packets dropped. Figure 2-6 shows some of the statistics available for a JCSS router.

Figure 2-6: An Example of the Statistics Available in DES

With a user-selectable level of statistics granularity, JCSS can provide answers to very detailed

questions. However, it is important to remember that bad inputs can lead to bad outputs. Users

JCSS MODEL DEVELOPMENT GUIDE V4.0

2-8

must validate their scenarios and configurations. Model developers are also expected to validate

their own models.

To use DES with JCSS, the user is required to have both an OPNET Modeler or IT Guru license

and a Simulation Runtime license. Licenses can be obtained by contacting OPNET directly

(www.opnet.com) or through the JCSS Program Office (jcss@disa.mil).

2.1.2.4 JCSS Model Library

JCSS is supplied with a wide selection of military and commercial device models. This includes

the full OPNET Model Library of commercial network devices and the JCSS military model

library. The military models include:

• Tactical Radios

• Encryptors (bulk encryptors and Inline Network Encryptors (INE))

• Multiplexers (including Federal Communication Commission (FCC)-100 and Promina)

• Media Gateways (including SCREAM, SHOUTip)

• Military Phone Systems

• Satellite Terminals

• Models to process DoDAF traffic: IERs

• Contributed Models (such as Link-16, TRC-170, UHF DAMA)

These models include network routing behavior, priority preemption, Radio Frequency (RF)

attenuation and propagation effects, and IP quality of service (QoS). Subsection 2.1.3 provides

more information on the composition of a JCSS model.

2.1.2.5 JCSS Contributed Models

This section describes the necessary information needed when submitting a Device or Network

model to the JCSS Program Office. The JCSS Program Office appreciates and accepts all

contributed models being developed by its user community. In order to ensure proper use of the

model, listed below are the requested requirements when submitting a model.

• Model Information: The user is expected to create a new document (in Word or Text File

format) with the following information:

o What is the purpose of the model?

o What technologies/standards are used by the models?

o Are there any model limitations?

o Does this model work with all JCSS functionalities such as Capacity Planner, DES,

Link Deployment Wizard, etc.? If not, what are the limitations?

o If the models include modifications to a JCSS and/or OPNET model, what was

changed (self description, ports, attributes, code, etc.) and why?

o Was the JCSS MDG used to develop these models?

o What Validation and Verification was performed on these models?

• Code Information: If the models are modifications on existing JCSS and/or OPNET models,

please provide any code changes to the standard model to be commented accordingly:

o // JCSS Modification START <model_name or model_group_name>

JCSS MODEL DEVELOPMENT GUIDE V4.0

2-9

o // JCSS Modification END <model_name or model_group_name>

o <model_name or model_group_name> is the name of the model or group of models

for which the code change was made.

• Packaging/Sending the model: Include a zip file with all related models/files needed to run

the contributed models in JCSS. The zip file should also contain the required documentation

above and any additional documentation such as design documents, user guides, etc. Please

send the models/project files to JCSS@disa.mil.

2.1.3 JCSS/OPNET Model Hierarchy

JCSS is built upon OPNET COTS technology, and the DES engine used by JCSS is the highly

optimized OPNET COTS DES engine. This DES engine uses models stored in an OPNET

format, and creating new models usually involves using the OPNET Modeler product.

When discussing models in JCSS, the terminology becomes important because there are many

types of models. This section briefly describes the six basic types of models, shown in Figure

2-7. These model types are identical to those used in the OPNET Modeler product. For clarity,

some OPNET terminology has been adopted with the exception that JCSS uses “device” instead

of “node”. Most important, JCSS employs Operational Facility (OPFAC) and Organization (Org)

military ideas to create network scenarios.

Network Model

(OPFAC,

Organizaion)

(Scenario)

Link

Models

Device

Models

Traffic

Models

Process

Models

Pipeline

Stages

Figure 2-7: The JCSS/OPNET Model Hierarchy

This diagram can be read as follows:

• A scenario is built with OPFACs and Org using device models, link models, and traffic

models.

• Device models are built using modules, which include process models, transmitters,

receivers and antennas, and associated pipeline stages.

This hierarchy allows modelers to create building blocks, such as process models, OPFACs, and

Orgs, that can be reused, reducing the cost of model development. A user who has OPNET

JCSS MODEL DEVELOPMENT GUIDE V4.0

2-10

Modeler can see the source code for nearly all of OPNET Standard Library (COTS) models and

for all the JCSS models. The user can copy and modify this code to make the model

development tasks easier. For more OPFAC and Org information, please see “JCSS 9.0 User

Manual”.

Table 2-1: Model Types and Descriptions

Model Description

Scenario A schematic of a network, including devices, links and traffic, terrain, failure scripts,
and trajectories for the movement of mobile devices. Scenarios are built with JCSS by
JCSS users, not model developers.

Organization A collection of OPFACs, devices, links, and traffic.

OPFAC A collection of devices, links, and traffic.

Device models Encapsulate the communications behavior of a physical device.

Process models A collection of state machines that often model specific network protocols or layers in
the Open Systems Interconnection (OSI) protocol stack. The behavior of the process
model state machines is implemented in C or C++.

Pipeline stages Model the communications effect of the physical layer. For wired connections this is
usually minor, but for wireless communications the pipeline stages model the effects
of radio propagation.

Link models Model wired connections. These can introduce delay and possess bandwidth
constraints.

Traffic models Model the traffic characteristics/patterns of a use case or scenario.

Some of the models from Table 2-1 are described in more detail in the following subsections.

2.1.3.1 Device Models

Device models, along with link models and utility nodes, are the fundamental building blocks for

JCSS scenarios. Device models embody the conceptual models that emulate real-world devices.

Device models are called node models within OPNET Modeler because they represent a node in

the network. Device models have two major functions:

• Define the external interfaces of the model, specifically how the user and the Scenario

Builder will interact with the model.

• Define the modeling behavior of the device by assembling and connecting appropriate

modules, which include process models, antennas, transmitters, and receivers.

Figure 2-8 shows the node editor. The model open in this editor is JCSS’ Cisco 2514 router. This

router is based on the OPNET Standard Library (COTS) Cisco 2514 model, with minor changes

to make it compliant with JCSS.

The Cisco 2514 is a simple router with two Ethernet ports and two serial ports. The Ethernet

ports are listed as hub_rx_3_0 (receive) and hub_tx_3_0 (transmit), and hub_rx_2_0 (receive)

and hub_tx_2_0 (transmit). These ports flow into Ethernet MAC process models, mac_3 and

mac_2. Further up in the model there are OPNET standard process models for IP, TCP, UDP,

RIP, OSPF, IGRP, EIGRP, and BGP. These protocols (and many others, including IPv6 and

Multiprotocol Label Switching [MPLS]) come with JCSS. They do not have to be coded for each

device, but simply laid out and connected in the node editor.

JCSS MODEL DEVELOPMENT GUIDE V4.0

2-11

Figure 2-8: Editing a JCSS Cisco 2514 Router Model

2.1.3.2 Process Models (.pr.c)

Device models are created from sub-models called modules. The most important of these are

process models, including a special type of process model called a queue model. Several types of

modules are shown in the sample device model in Figure 2-9, which depicts the PRC radio

device model:

• pt_0 is a point-to-point transmitter.

• pr_0 is a point-to-point receiver.

• Antenna is an antenna.

JCSS MODEL DEVELOPMENT GUIDE V4.0

2-12

• tx_0 is a radio transmitter.

• rx_0 is a radio receiver.

• The remaining modules are process models.

Not shown are the queue model (which can be found in Figure 2-8, as mac_2 and mac_3), bus

transmitter, bus receiver, and external system module.

Also seen in the diagram are streams, represented by solid arrows, which facilitate

communication between modules; a statistic wire, represented by a broken arrow; and an

association, depicted as a dotted double-headed arrow.

Figure 2-9: The Process Models Within the PRC Radio Model

Process models (including queue models) are created and edited using the OPNET Process

Model Editor, which is a part of OPNET Modeler. Figure 2-10, for example, shows the process

model being edited.

JCSS MODEL DEVELOPMENT GUIDE V4.0

2-13

The highest level view of a process model is the state machine. (It is assumed that readers of this

document are familiar with the concept of a state machine, so this discussion is limited to an

overview of the OPNET framework for state machines.) States are represented by colored disks.

There must be one initial state, which is indicated by a big black arrow. There are two types of

states, forced and unforced. Forced states are transient and are exited immediately after entry.

Once a machine enters an unforced state, it remains there until the next event.

State transitions are represented by black arrows. Solid black arrows indicate unconditional

transitions. Dashed arrows indicate conditional transitions. The condition is shown in

parentheses. In the example, the condition is the name of a C pre-processor macro.

Figure 2-10: The Process Model Editor

There are three places where executable code can be invoked:

1. Upon entry to a state, called the Enter Execs

2. Upon exit from a state, called the Exit Execs

JCSS MODEL DEVELOPMENT GUIDE V4.0

2-14

3. During state transition, set as the executive attribute of the transition

If a state transition executive has been set, then it will be displayed following the transition

condition, preceded by a virgule. There are none shown in Figure 2-10.

By double clicking into the Enter or Exit Execs, the user can be edit the code for these execs with

a text editor (as shown in Figure 2-11).

Figure 2-11: Editing C Code in the Process Model Editor

2.1.3.3 Pipeline Stages

The physical layer is modeled by pipeline stages, which emulate physical processes. Link models

and radio models rely on pipeline stages to implement modular computations and make decisions

relating to the transfer of packets between transmitters and receivers. Each pipeline stage is a C

language procedure within one C file with the suffix .ps.c. There may be seven stages (including

the receiver group logic, Stage 0) for a radio transmitter, and for a radio receiver, eight stages.

Refer to OPNETWORK Session 1530, Modeling Custom Wireless Effects (see Figure 2-12).

JCSS MODEL DEVELOPMENT GUIDE V4.0

2-15

Figure 2-12: Receive Pipeline Stages

2.1.3.4 Link Models

Link models simulate the characteristics of transmission media, such as coaxial cable or fiber-

optic cable. Links are used to wire together the device models in a scenario. Important attributes

are: whether the link is simplex or duplex; the speed (which may be selected by mnemonics such

as OC3 or T1); and the delay (which may be a constant value or based upon speed times

distance). There are currently no additional JCSS requirements for modeling links.

2.1.3.5 Traffic Models

JCSS makes use of all the traffic models available in OPNET Modeler. These include explicit

traffic (modeled by OPNET application models), traffic flows (background routed traffic),

captured traffic Application Characterization Environment (ACE), and link loads (background

loads on links). In addition, JCSS provides an IER model, which can model the various types of

traffic that IERs specify.

Traffic modeling is performed by study analysts, and more information can be found in the

following sections.

Rx Antenna Received

Interference 6 7

8

Start of
reception

End of
reception

0

1

1 1

Error

1

Background

9

Signal-to-
Noise

1

Bit Error

1

Error

1

“Ignore”: delete packet

“Valid”

“Noise” End of
reception

Affects
Inoise,

SNR, BER,
&

JCSS MODEL DEVELOPMENT GUIDE V4.0

2-16

2.2 MODEL DEVELOPMENT LIFE CYCLE

Figure 2-13 shows the high-level JCSS model development life cycle. The life cycle contains

seven key activities: identify the model need, define model requirements, design the model

architecture, implement the model, develop the test plan and test scripts, validate and verify the

model, and document the model. The following sub-sections provide an overview of activities

and associated roles and responsibilities of the involved parties.

Figure 2-13: JCSS Model Development Life Cycle

2.2.1 Model Development Roles and Responsibilities

A general model development life cycle contains a program manager, a technical manager, a

model developer, SMEs, and a QAE. Their roles and responsibilities are as follows:

Program Manager. The program manager has financial responsibility and visibility to

concerns outside the development process. The program manager will take input from all

the other individuals, but is responsible for getting the correct model developed at the

correct cost.

Technical Manager. The technical manager is responsible for the technical decisions, such

as identifying participants, resources, standards, tools, and objectives. The technical

manager also provides technical oversight of the development process, and this

individual’s primary role is to match the requirements and business constraints with the

technical constraints.

Model Developer. This individual is a technical expert in coding models with specifications.

SMEs. There are two SMEs involved with the model development life cycle: an operational

SME who understands how the equipment is used in the field and a technical SME who

understands how the equipment works internally. Both are needed. The SMEs are heavily

involved in specifying requirements and validating the model architecture.

QAE. This individual insures certain steps are properly validated. They are responsible for

developing and executing test scripts from the test plans.

JCSS MODEL DEVELOPMENT GUIDE V4.0

2-17

2.2.2 Model Development Activities

Each life-cycle activity in the life-cycle flow depicted in Figure 2-13 is described in terms of

actions, roles, and outputs in the corresponding step in Table 2-2. The Roles column lists the

owner of the activities for each step. The Outputs column lists the applicable outputs of each

step. The list is not meant to be exhaustive; users should tailor their actions and outputs for their

needs.

Table 2-2: Model Development Activities

Step Action Roles Outputs

1. Identify the model need. The program manager
should work with the technical manager to
determine the reasons and the facts needed to
develop the model. He or she must also identify and
allocate resources and responsibilities for
supporting the entire model development life cycle.

Program manager
Technical manager

Model need
Resources plan

2. Define model requirements. The program manager
should involve relevant parties in the development
life cycle. The program manager and technical
manager should also clearly identify the model
need, the individual responsibilities, and the
expected outcomes to the team. The SMEs and
QAE should provide information to help the team
analyze the model needs and determine the
requirements.

Program manager
Technical manager
Model developer
SMEs
QAE

Model
requirements

3. Design the model architecture. The development
team is responsible for designing a model
architecture that can fulfill the requirements.

Technical manager
Model developer
SMEs

Model architecture

4. Implement the model. The model developer should
follow the model architecture to implement the
model.

Model developer Model

5. Develop the test plan and test scripts. The QAE
should apply the defined requirements and model
architecture to develop the model test plan and test
scripts.

QAE Model test plan
Model test scripts

6. V&V the model. The QAE should work with the
model developer and SMEs to V&V the model. In
addition, the QAE should document the results in
the V&V Report.

Model developer
SMEs
QAE

V&V Report
Final model

7. Document the model. The model developer is
responsible for documenting the usage of the model
in the model user guide.

Model developer Model user guide

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-1

3 JCSS MODEL DEVELOPMENT

This section provides the guidance and requirements for creating traffic and communications

device models compliant with the JCSS modeling architecture and which can interoperate with

models in the JCSS standard library. This section is divided into two parts: the first part will

focus on the traffic model development, and will introduce the different types of traffic models

that can be shared in JCSS environment. The second part will emphasize the device and process

model development, and will discuss the details of developing communications device and

process models. These models can be grouped into three categories: the first category provides

guidance to kick off the development process; the second category introduces the common JCSS

model development considerations to the developer; and the third category applies to specific

classes of JCSS model development. Each of these specific class subsections explains how to

build a JCSS component model, and includes the following:

• Defines a JCSS component class model

• Defines minimum attribute compliance

• Identifies required modules for a device of that class

• Identifies device model initialization steps

• Describes component class interoperability with other JCSS and OPNET Standard

Library (COTS) classes

• Describes the JCSS and OPNET Standard Library (COTS) failure and recovery

• Describes device model measures of performance (MOP) and how to collect statistics

• Describes the JCSS model documentation standards

• Describes the device model construction process

Phase converters and long-haul modems are not covered in this version of the JCSS Model

Development Guide; however, they can be modeled as link models with appropriate latency.

3.1 TRAFFIC MODEL DEVELOPMENT PROCESS

There are five different types of traffic models that can be used in JCSS, each with their own use

cases:
Table 3-1: Traffic Model Use Cases

Traffic Type Typical Use Cases

IERs • Access to deployed traffic in IER form (text
files, etc)

• Quick and easy way to do reachability
analysis for your network

• Traceability
• Reports
• Application packet level tracking

ACE • Application is already deployed
• Access to actual network traffic (packet

traces)
• Most accurate representation

ACE Whiteboard • Know the behavior of application to be
deployed

• Test before deployment

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-2

Standard Application Model • Study behavior of commonly used application
models like email, http, etc

Traffic Flows (i.e., Demands) • Load network with background traffic
(unrelated traffic) to study your application
model

• Quick and easy way to do reachability
analysis for your network

• Capacity planning studies

For ACE, ACE Whiteboard, Standard Application Models, and Traffic Flows, please see the

OPNET Modeler online documentation.

3.1.1 IERs

IERs are a Department of Defense (DoD) Core Architecture Data Model (CADM) standard.

Essentially, an Operational IER is a single thread of a mission or operation which tells the

planner:

• Who is sending the information?

• What information is being sent?

• Why the information is being sent?

• Who is receiving the information?

• How the information must be passed for the warfighter mission, process, or transaction to

be completed successfully.

IERs are known as a high level traffic meaning that the user can specify an IER between units

such as Organizations and Operational Facilities (OPFACs) instead of actual devices. The idea

is to make the process easier and Defense specific by allowing the user to think of the network in

military terms. At the highest level, Organizations can be looked at as military organizations

(such as DISA, a division, etc.) which are made up of a number of assets. These assets would

include common military buildings, vehicles, and communications devices. Organizations are

then made up of a number of OPFACs, which can be thought of as the assets for the

Organization (i.e., the buildings, tanks, planes, soldiers, etc.). The OPFACs then hold all of the

communication devices which make up that asset.

By leveraging this hierarchy, the user can deploy various forms of traffic to interact with these

devices through the use of IERs. IERs allow the user to define information about traffic

messages (such as interarrival time, classification, start time, end time, size, perishability, etc.)

which traverse from a producer OPFAC to a consumer OPFAC. The important concept of IERs

is that they also allow the user to deploy traffic at a high level (i.e., between a tank and a plane)

without having to fully understand the underlying communication devices inside the OFPAC.

The user only needs to define that a message of a certain size needs to be delivered at a certain

time between two assets. For example, an “attack” command can be realistically modeled as a

message going from the command center to a plane.

Using this workflow, the user determines the capabilities of a particular asset and can make

adjustments as necessary based on the load required by the network users. The overall load

comes from the databases and lists of IERs which have been created by planners and users.

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-3

Also, as everyone is using common terminology, the network planner can share the created

network topology with other non-technical users who are familiar with the higher level

Organizations and OPFACs. In addition, IERs can be used in other enterprise architectures such

as the Department of Defense Architecture Framework (DoDAF). This commonality helps

facilitate planning and acquisitions processes.

As JCSS is a Defense oriented tool, a subset of the IER functionality has been added to support

IER workflows. This functionality provides traceability, statistics, reports, and packet level

tracking. IERs can be defined in the Scenario Builder or can be imported from text files and IER

report. Further, the use of the “IER_Demand” traffic flow model represents IER and thread

traffic on same lines as COTS application and flow traffic. One traffic flow object is used to

represent one IER or one segment of an IER thread. The following screen shot display the IER

Demand Model attributes:

Figure 3-1: IER Demand Model Attributes

Threaded IERs on the other hand are represented as sequence of IERs with each IER having

some specific firing conditions. These can be modified in the Thread Information sub-attribute:

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-4

Figure 3-2: IER Thread Information Attributes

3.1.2 Operational Element

The Operation Element (OE), sometimes known as the IER Manager, manages IER and thread

traffic for each OPFAC in a scenario. There are several behaviors for the OE node:

• An OE node should be placed in every OPFAC that sends or receives IER/thread traffic

in the scenario. This is because the OE node regulates all of the IERs for a particular

OPFAC as IERs are a high level traffic. This means that the OE node keeps track of

when the IER/Thread is fired, what devices are selected, etc. Also, the OE writes

IER/Thread statistics and reports, and interfaces with COTS application packet level

tracking (also known as Application Delay Tracking, ADT).

• An OE node can have IER traffic flow objects attached to it (i.e., a user can specify an

endpoint of the IER object as an OE). When this is the case, a device is “Auto-Selected”

for that endpoint. This means that the OE node will randomly pick a device based on its

ability to handle the IER. The rules for this selection can be found in the IER Firing

Rules node and are based on decision table rules, device availability, and random

selection.

• If no device is available in the network, the OE must retry firing the IER until a device is

found or the maximum number of retries is exhausted. The maximum number of retries

is configured on the IER Firing Rules node.

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-5

• The OE translates the IER definition information using the IER traffic flow attributes to

an interrupt that can be sent to the System Element (SE) application layer of a device.

The device can then read the IER information and translate it into packets.

• The OE controls HLA operations from the HLA Commander software that can be

installed with JCSS. This includes OPFAC movement and firing of IERs from a third

party simulator.

3.1.3 System Element

Each end-system needs an SE module to support IERs. The functions of an SE module include

interfacing with the OE node, initiating/receiving lower layer signaling (such as the transport

layer), generating actual application messages and sending them to a lower layer, and receiving

application messages meant for the end-system.

Figure 3-3: Node Model with SE modules

Examples include (but are not limited to): se_trafgen, se_udp, cs_voice_se, prc_se

3.1.4 OE – SE Interaction

The OE node sends remote interrupts to the SE which, in turn, generates application messages to

be sent across the network. Also, the SE module informs the OE of traffic reception as it receives

other application messages from the network. Using this information, the OE is then able to write

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-6

statistics and reports to be analyzed by a user of the model. During custom JCSS model

development, interfacing with an OE is only required if a new application layer is needed or an

existing application layer is modified. If working on lower protocol layers such as layers 1

through 4, one of existing SE model can be utilized instead.

Figure 3-4: OE-SE Interaction

3.1.5 DoDAF Integration

The Department of Defense (DoD) Architecture Framework (DoDAF) provides a standard for

description, development, presentation, and integration of systems for the DoD. DoDAF defines

a standard way to organize an enterprise architecture or systems architecture into a set of

complementary and consistent views. All major U.S. Government DoD weapons and

information technology system acquisitions are required to develop and document an enterprise

architecture using the views prescribed in the DoDAF. While it is clearly aimed at military

systems, DoDAF has broad applicability across the private, public, and voluntary sectors around

the world, and represents only one of a large number of systems architecture frameworks.

As JCSS provides a robust set of military communications modeling and simulation tools, it is

natural to envision an interface between JCSS and DoDAF that can facilitate building a

simulation model of a communication system defined in DoDAF. Also, as many of the JCSS

users are military sponsored, they are mandated to use the DoDAF standard to compare and

present systems which can be used in the battlefield.

Since DoDAF is a large standard consisting of many products, a JCSS interface to cover all of

these products cannot be realized immediately. Therefore, a decision was made to initially focus

on integrating a limited number of products. Products were selected based on their relationship

with current JCSS features. This led to the first interface supporting DoDAF OV-3 and SV-6

products as they closely resemble the JCSS IERs workflow.

As part of this work, a new DoDAF Information attribute was placed on the IER traffic flow

object. To modify this attribute directly, the user can right click on the IER traffic flow object

and select the Edit Attributes (Advanced) menu.

Operational
Element

(OE)

System
Element

(SE)

Transport
Protocol

Receive message to

generate traffic

Inform about IER

Open/close TCP or UDP

connections

Send traffic

Handle TCP or UDP signaling

messages

Receive traffic (IERs)

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-7

Figure 3-5: Viewing the DoDAF Information Attribute

Each sub-attribute of this attribute corresponds to a DoDAF attribute in an OV-3 or SV-6 View.

In some cases, the sub-attributes inside the IER Attributes attribute are used instead of adding a

new DoDAF Information sub-attribute (as there is overlap). To change the value, a user can

directly insert a string into the attribute and click OK to save the change. However, it is strongly

recommended that the user utilize the DoDAF Integration dialog box (explained in more detail

in the JCSS IER Models User Guide) to help configure the DoDAF attributes properly.

Once the DoDAF information is set, the Capacity Planner (CP) and Discrete Event Simulation

(DES) simulations can use these values to help send traffic through the network.

3.2 COMMUNICATIONS DEVICE AND PROCESS MODEL DEVELOPMENT PROCESS

The development process is the second of three phases in the JCSS communication device model

life cycle. At this point, the developer has a set of model development requirements that can be

used to define the development approach. Figure 3-6 shows the high-level development process

that consists of three individual development approaches which guide the developer to kick off

the model implementation with appropriate procedures.

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-8

Figure 3-6: High-Level Model Development Process

3.2.1 Development Approaches

In order to determine the most efficient way to implement the model, the developer needs to

match the development effort to appropriate development approaches, such as:

• Modifying the existing OPNET model to be JCSS compatible

• Surrogating from the existing JCSS model

• Developing a new model

The following subsections introduce the key considerations of each specific development case.

3.2.2 Modifying the Existing OPNET Model to Be JCSS Compatible

In this case, the scope is to convert an existing OPNET model into a JCSS model. The goal of

this subsection is to provide the basic approach and key focuses for the developer to kick off the

modification process. They are as follows:

• Identify the component class of the device and the OPNET version that was used to

implement the model.

• If the model is implemented in an older version, then it must be upgraded and matched to

the version of JCSS.

• If the device used a COTS traffic model, then it will work as-is in JCSS using DES only.

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-9

• If the device “wants” to use the JCSS IER traffic specification infrastructure, then ensure

it has required attributes (specific for each component class).

• If the device is an end device, it needs the addition of the relevant “se” module.

• For interoperability with specific JCSS component class devices, refer to Section 3,

which has a compliance subsection for each component class.

• To get proper device functionality in CP/logical views, make sure the device has the

required attributes (specific for each component class). Scenario Builder may still require

CP routing/logical view code enhancements to support full CP/logical view functionality.

• The link deployment wizard will ONLY work if it has relevant self-description (and a

matching link name in the LinkTypeMap.gdf file).

• If it has complex attribute specification, then Scenario Builder may require a wizard-like

functionality to ease the device deployment.

3.2.3 Surrogating From the Existing JCSS Model

In this step, the developer re-uses a similar JCSS model as the foundation to construct the new

model. The key considerations while surrogating from the existing JCSS model include the

following:

• If surrogating ONLY involves attribute default changes, then NO modification would be

required.

• If surrogating involves new attribute addition or changing the behavior of contained

modules, then it may need device model functionality enhancements.

o In DES, process models/external files/pipeline stages need to be enhanced.

o In CP, CP routing changes need to be determined.

• If surrogating involves changing physical layer characteristics (like changing radio

transceiver frequency, power, etc.), then NO modification would be required.

• If surrogating involves adding new interfaces (ports), then relevant self-descriptions for

the new interfaces (ports) need to be added.

3.2.4 Developing a New Model

In this case, the developer is required to construct a new model from scratch.

• Identify the component class of the device and its interface requirements.

• If the characteristics of the device include protocols and technologies available in the

OPNET COTS offering, then use device creator to create a new model with required

interfaces and technologies.

• If device creator cannot be used, then build the new model in OPNET Modeler according

to device specification (building process models/external files/pipeline stages).

Regardless, it is recommended that the user deploy Device Creator to create a baseline of

any new model created. Refer to section 3.5 for more information on Device Creator.

• Perform all the steps in the “Modifying the Existing OPNET Model to Be JCSS

Compatible” subsection.

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-10

3.3 MODEL INTEROPERABILITY ISSUES

Before development of any device models in the JCSS environment; the developer needs to pay

attention to the interoperability issues that are associated with the interactions between different

device models. This subsection in particular discusses the interoperability concerns that users

must have before starting the model design/implementation. Based on the objective of the model

development and the final modeling environment in which users will deploy their models,

interoperability can be separated into four main categories:

• Compatibility issues

• Interfacing issues

• Self-description issues

• Versioning issues.

The following provides some of the common concerns and issues among those four categories

that a developer will face. In addition, examples are used to address the detail of those concerns.

3.3.1 Compatibility Issues

Compatibility issues include functionality, protocols, and IP auto-addressing issues. The

following subsections discuss these in detail.

3.3.1.1 Functionality Issues

A particular device model’s intended behavior determines some of its compatibility with respect

to other models. The model developer should give due attention to interoperability, starting at the

high-level design of the device. At this point the developer also needs to give attention to the

high-level function of the models with which it will interface.

For example, when building a radio device model that has the ability to generate IER traffic, the

user needs to know the functions of the OE at a high level. (The OE coordinates sending and

receiving IER-based traffic.) This reduces or ideally eliminates work duplication and code

overlap between the radio and the OE. In this example the user should know the following:
1

• The radio does not need to write IER statistics.

• The radio does not need to read the IER information.

• The radio does not need to schedule IERs.

• The availability of the radio for transmission and/or relay will be dependent on the OE

implementation.

This example merely covers, at a high level, interfacing the radio with the OE. During the high-

level design, the developer needs to make a list of devices (per layer) that will interface directly

(wired/wireless connection) or indirectly (using other communication mechanisms). Usually,

model specifications clarify device functions, but this quick check should be performed to

discover any functionality-related overlaps in advance.

1 This statement assumes that the behavior of the OE is similar to the one present in the JCSS standard model library.

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-11

3.3.1.2 Protocol-Related Issues

In addition to functionality, the developer should make sure that the model under development

interfaces with the correct protocols and/or technologies. For example, the current JCSS model

nw_ethernet_wkstn.nd.m has two specialized interfaces—one that supports TCP transport

protocol and one that supports UDP. It has a separate implementation of the SE for either of

these protocols.

Figure 3-7: Protocol Dependency (e.g., Ethernet Computer Model)

Based on the supporting protocol layer stack, the developer needs to do some custom model

development. Also, in some cases protocols (upper- or lower-layer protocols) have

interdependency upon one another, and the developer must consider this while performing the

high-level design for the device model.

3.3.1.3 IP Auto-Addressing Enhancements

Every IP interface that has a link connected to it needs to have an IP address. If the network is

huge, then assigning addresses manually to every interface becomes cumbersome. To make it

easy for the user, OPNET Standard (COTS) models have a feature called “IP Auto-Addressing.”

By default, device model instances have auto-addressing enabled in a network, and the first IP

process to initiate in the simulation automatically assigns IP addresses to the interfaces that have

their value set to “Auto Assigned.” To accommodate new models developed, model developers

need to enhance this COTS utility, typically (but not only) for Layer 2 custom models. Currently,

support exists for the JCSS standard models such as Promina, circuit switches, satellite terminals,

and the like. Refer to section 3.14 (API and Framework) for more information.

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-12

3.3.2 Interfacing Issues

One of the key steps in development involves taking into account the model integration issues (in

the case of a single model, integration of different modules/processes
2
). The model developer

needs to realize that not all of the model development progresses in seclusion (i.e., the various

modules of a device model need to interface with each other, even during development).

Recognizing the integration issues sooner rather than later benefits the model integration process.

Initial designs for model development should address this. The various components of this

category are information-sharing and communication aspects.

3.3.2.1 Information Sharing

Through the interfaces, information can be shared between the two process models that belong to

the same module, different modules of the same device model, or two completely different

device models. This can be done in a variety of ways, some of which are discussed in the

following subsections.

3.3.2.2 Process Registry

The OPNET simulation kernel allows any number of OPNET process instances to register

themselves in a global (i.e., accessible to any process in the scenario) process registry. The

processes register themselves with the required attributes only once during simulation (typically

upon creation); however, processes can add new attributes/descriptors whenever required. Other

processes can later access these attributes during the simulation’s execution. Model developers

should consider what information, in the form of process registry attributes, processes should

publish via the process registry upon their creation or modification. It is necessary that the new

processes written realize what information (attributes) published by previous processes could be

of use.

An example of process registry
3
 use can be seen in the JCSS satellite models, where the satellite

space segment registers its attributes in the process registry and then the earth terminals discover

(retrieve) this information during their initialization.

3.3.2.3 Module-Wide Memory

Module memory is the most permanent and widely scoped memory provided in OPNET

modeling (except for global variables). A single block of memory can be installed for a module

by any process that is owned by that module. Installation is performed by calling the Kernel

Process (KP) op_pro_modmem_install() and passing the address of the memory block. Any

process owned by the module can then obtain the installed address by calling the KP

op_pro_modmem_access(). The structure and contents of the memory block are entirely the

responsibility of the model developer, as is memory de-allocation of previously installed blocks

when a new installation occurs. Initially the address OPC_NIL is installed to indicate the absence

of any module memory.

2 Processes are instances of a process model. For example, ip_dispatch.pr.m is a process model that can be instantiated a

number of times in a simulation of a network that contains many routers and workstations.
3 Refer to the OPNET Product documentation for details on the process registry and its use.

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-13

Again if the developer is adding the new process models to an existing module in the node

model, this would be a place to look for some already initialized information.

Figure 3-8: Module-Wide Memory (e.g., Ethernet Computer Model)

3.3.2.4 State Variables

State variables are analogous to the global file and are associated with each process model. Other

processes can access these variables through the use of the KP op_ima_obj_svar_get().

3.3.2.5 Global Variables

Global variables are any regular global variables declared in the header block of one process and

can be used by other processes. The user is discouraged from using global variables as they are

not an ideal or reliable method of sharing information between processes. Global variables also

present problems for parallel simulations. It is recommended to use process registries, ICIs, or

packets to share the information instead.

However, if it is necessary to create global variables, the developer should declare the variable in

the header block of one process and declare the variable as an extern in the header block of all

other process models. Note that declaring a variable in the header block also makes it global to

all instances of the process in which it is declared, as opposed to state variables where the

information remains local to the process instance.

Following is an example of using a global variable:

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-14

Figure 3-9: Declaration of Global Variable in Two Process Header Blocks

3.3.3 Communication Aspects

This subsection introduce the key aspects of communication, such as packet formats,

transceivers, process models, link models, the link type map file (i.e., LinkTypeMap.gdf), packet

encapsulation, interrupt types, and interface control information (ICI).

3.3.3.1 Packet Formats

Packets are the units of transfer of information in a data network. In OPNET/JCSS terminology,

there are two basic types of packets: formatted and unformatted. The formatted packets are the

most commonly used mode of data transfer because formats can easily act as a constraint on the

transmitter and the receiver of the device model. Packet formats define the internal structure of

packets as a set of fields. Refer to Appendix D for a list of packet formats used in JCSS standard

models. The packet format constraints are placed at transceivers, process models, link models,

and the LinkTypeMap.gdf file. For example, a Promina device and the associated link that

connects two of its Wide Area Network (WAN) ports, Promina_wan_link. Because the packet

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-15

format affects multiple model elements, it can be a significant issue when integrating different

device models.

3.3.3.2 Transceivers

Each pair of transceivers in a device node model has a list of packet formats it can support. In the

case of Promina, the packet formats supported by the WAN transmitter and receiver are

pro_cx_pk, pro_hello_pk, and pro_wan_pk, which are packet formats to support the Promina

Cell Express packets, Promina Hello packets, and Promina data packets from neighboring

Prominas.

3.3.3.3 Process Models

This is the place where the packets are actually created, received and/or passed on by the

modules above or below using the stream or forced interrupts. A process model can be said to be

supporting a packet format if the stream interrupt received by this process model with this stream

interrupt is properly handled. In the case of Promina, the process model that handles (processes)

the above-mentioned packet formats is pro_wan_port_controller. The packet format supported

on a pair of transceivers is decided based on the design of the process models.

3.3.3.4 Link Models

Every link also supports a list of packet formats; if trying to connect a link between two devices

and the packet formats supported by the transceivers are not supported by the link model itself,

then the connection between the two devices will be invalid. Continuing with the Promina

example, the promina_wan_link used to connect the two WAN ports supports pro_hello_pk and

pro_wan_pk.

3.3.3.5 Link Type Map File

This is a text file that contains information about the various link types used in the JCSS

environment that is primarily used by the JCSS Scenario Builder to determine if an external link

connected between two devices supports the assigned ports (transceivers). Refer to the JCSS

Interface Control Document for details on this file, including its format and content.

3.3.3.6 Packet Encapsulation

Additional information, such as header information, is added to the packets as they are forwarded

from one module to the other. One of the common methods is to use packet encapsulation, where

the original packet is wrapped in a new packet format and the relevant packet fields are

populated (the original packet now being a packet field of the new packet). For example, as a

TCP packet goes down the protocol layer stack, it gets encapsulated into an IP datagram, which

then gets encapsulated into the data link layer technology packets (e.g., Ethernet), and so on.

Later, on the receiving end the same packet gets de-capsulated (i.e., the information is stripped),

and the de-capsulated packet is then sent up the protocol stack. The correct encapsulation and de-

capsulation processes are necessary at each layer (OPNET module), and one of the

interoperability concerns that developers should have is handling it appropriately in their models

and forwarding packets of formats as expected by the neighboring modules.

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-16

3.3.3.7 Interrupt Types

When a process is invoked by an interrupt, it usually is in a state in which it expects a limited set

of interrupts. The first concern of the process is to determine the type of the incoming interrupt,

so it can tailor subsequent processing appropriately. The KP op_intrpt_type() provides the

process with an integer code that represents the type of the current interrupt.

Apart from the packets (stream interrupts) that can be received by a process from other

processes, there are other interrupts that can affect the behavior of a model. It is imperative that

caution be taken in the handling and scheduling of these interrupts because they are the primary

means of communication in a simulation.

Each interrupt type can have many different purposes. For instance, a single process might

schedule self-interrupts to model various kinds of processing delays and time-out intervals. To

distinguish the purpose of such interrupts, and hence provide the receiving process with context-

sensitive processing ability, an integer code is associated with self-, remote, and multicast

interrupts. The code of the current incoming interrupt is available from the KP op_intrpt_code().

It is important that the process model under development be ready to handle all the interrupts it is

designed to handle. For example, if the process model under question is development of a new

SE that supports both TCP and UDP transport protocol, then the application module (SE)

generates the traffic based on the information received from the OE. In this case, the SE module

should be aware of the communication mechanism that the OE will be using to transfer this

information (e.g., remote/stream/forced interrupt) and should be able to handle that particular

interrupt in a desired fashion (generate the traffic based on this information).

A less preferred approach is to have a default handling of any interrupts that model is not defined

to handle (using the interrupt steering mechanism). This is done by defining a state transition

with its condition attribute set to “default,” as shown in Figure 3-10. This will apply to interrupts

received at the source state of the transition that the process does not know how to handle.

Figure 3-10: Default Interrupt Handling

3.3.3.8 Interface Control Information

An ICI is a structured collection of data that is transferred between processes, as a form of inter-

process communication. An ICI becomes associated with an interrupt if a process installs the ICI

prior to taking the action that causes the interrupt. Layered protocol interfacing is the main

application of ICIs, but they can also be used to associate information with sophisticated self-

interrupts or peer-to-peer remote interrupts.

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-17

Because ICIs are associated with interrupts, handling the information in the ICIs is as important

as handling the interrupts themselves. In case of the current JCSS standard models, the

communication between the OE and the SE is established via a remote interrupt. There is an ICI

associated with this remote interrupt that has the information about the IER that this SE needs to

generate. The KP op_intrpt_ici() is used to get the ICI associated with the recent interrupt and

op_ici_format() to get the format of the associated ICI.

Another example of the use of ICIs is in the oe_threads process model (of the OE). In this

process model, all the thread instances are scheduled at the start of the simulation, and the ICIs

are associated with self-interrupts. These ICIs contain the actual information regarding the thread

that needs to be fired. Once the process receives these self-interrupts it retrieves the ICI

information and then actually fires the thread segments. The KP op_ici_create() is used to create

an ICI and op_ici_install() to install it with the interrupt.

The most important interfacing issue that can be associated with ICIs is their formats. The

interfacing process needs to know what ICI format to expect and what information is available in

that ICI format (ICI files are stored as *.ic.m). Refer to Appendix E for the list of ICIs currently

used in the JCSS standard models.

3.3.4 Self-Description Issues

Every model produced in JCSS holds some information regarding how it can interface with other

model types. JCSS refers to this part of the model definition as the self-description. This

subsection plays a key role in defining device interoperability and provides guidelines for how to

define the self-description of the custom model.

The self-description information for each model will vary depending on the class component of

the model (e.g., a network layer device versus a datalink layer device), supporting technologies,

and so on. The port information is one of the most common pieces of information that is looked

for within the self-description. Following discussions point out how this information is specified

for the JCSS models. If the custom models do not support the same packet format information as

JCSS models, then self-description information based on the developed models will have to be

developed.

3.3.4.1 Port and Port Groups

The JCSS Link Deployment Wizard depends on the information present in devices’ and links’

Port Self-Descriptions. The Port Self–Description can be accessed by selecting “Interfaces | Self-

Description” from within OPNET Modeler’s Node Model Editor or Link Model Editor. For all

the JCSS models, each port category must have a self-description port object. For example,

MRC-142 (JCSS standard device model) has the following ports:

Point-to-Point Ports. Ptp_pt_0, ptp_pt_1

Radio Ports. Radio_tx_0, radio_tx_1

Two port objects (ptp_pt_<n> and radio_tx_<n>) will be created with a range from 0 to 1 (see

Figure 3-5).

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-18

Figure 3-11: Self-Description Port Objects

Each port category needs an “interface type” characteristic defined for it. This interface type

defines the technologies that the set of ports supports. Refer to Appendix U for details.

3.3.5 Versioning Issues

To upgrade the models to a new JCSS standard model library, users need to force-compile all

their models with the new header files. JCSS supports backward compatibility. For example,

models developed on Version 14.5 can be applied on Version 15.0, but not vice versa.

3.3.5.1 Force Compilation

This is one of the easiest but very vital steps in development of models that are interoperable. It

is necessary to compile all the models with the correct headers. During the development efforts,

it is possible that the developer may have had to modify or enhance the current headers in either

the JCSS or OPNET standard model library.

To force-compile the models used in a particular simulation, check the force model

recompilation checkbox under “Execution|Advanced|Compilation.”

To force-compile all the models in directories listed in the mod_dirs attribute of the

Sim_Domain\op_admin\env_dbX.Y file, the user needs to open an OPNET console. Force

compilation can be done from this console as follows:

set opnet_user_home=<JCSS_Install_Dir>\Scenario_Builder

op_mko –all >comp_info.txt

This will compile all the models and put the compilation information in the comp_info.txt file.

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-19

3.4 JCSS CAPACITY PLANNING COMPLIANCE REQUIREMENTS

CP in JCSS applies analytical techniques to rapidly determine the bandwidth requirements to

support specific traffic profiles and patterns. CP graphs are created in layers, and traffic is

applied and performs shortest-hop routing in the order illustrated in Figure 3-6. Because of the

use of analytic techniques and shortest-hop routing, the results from CP can be different from

those found after running DES. This subsection is of interest when:

• Analytical modeling is being performed using the Deployment Editor (DE)/CP/Resource

Planner (RP)

• Models are required to be built at minimum cost

• A decision regarding the “closest match” to models available in the JCSS standard suite

needs to be made

3.4.1 Factors of Interest during Analytical Modeling in Capacity Planning

The following properties of a model are of interest and significance when a model is used in the

CP:

• How does the device affect routing of messages in the scenario? Does it perform shortest

path routing? Does it treat voice and data messages differently (as far as routing is

concerned)? For example, for a particular device, does it route voice messages differently

than data? Does it require circuits to be set up? Which layer does it belong to in the CP

routing layer (see Figure 3-6)?

• How does the device affect the size of the message after it processes it? That is, does the

message size differ when it receives on an in-port and sends on an out-port?

• What special connectivity restrictions are there for the device? Are there particular ports

that connect to particular devices/device types? Do particular ports have specific message

type handling capability (e.g., only data, only voice)?

3.4.2 Handling CP Routing

CP generates graphs in layers in the order specified in Figure 3-6. Edges belonging to the layer

above are abstracted away in the current layer.

By default, all new device models encountered by the CP will be assumed to perform shortest-

hop routing without the need for circuits. If circuits are required by the device being modeled,

then the use of a surrogate, or substitute model, is warranted. Possible surrogates are ATM,

Tactical Satellite Signal Processing (TSSP), Promina, Multiplexer, and frame relay devices.

Routing is performed in the order illustrated in Figure 3-12. For example, TSSP circuits are built

and routed prior to Promina circuits. Properties to determine which layer a device belongs to are

listed in Table 3-2.

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-20

Figure 3-12: CP Layers

Table 3-2: Properties to Determine CP Layer

Layer Attribute
Attribute
Location

Acceptable Value

equipment type on device generic

interface type

machine type

self-
description

self-
description

contains atm:

router or switch

ATM

interface type

equipment_type

self-
description
on device

contains atm:

Promina

equipment type on device generic

TSSP

nodal mode
self-
description

contains TSSP

ATM

TSSP

Promina

Multiplexer

Frame Relay

IP

Voice

VTC

UHF DAMA Link16

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-21

Layer Attribute
Attribute
Location

Acceptable Value

Promina equipment type on device generic or Promina

Multiplexer equipment type on device generic or Promina or Multiplexer

equipment type on device
generic or radio or Joint Tactical
Information Distribution System (JTIDS) or
computer

machine type
self-
description

router or workstation or server or Local
Area Network (LAN) or Accelerator 4000
or application proxy

IP

interface class
self-
description

IP

JRE Links on device n/a (attribute must simply exist)

Link16

equipment type on device JTIDS

Platform ID on device n/a (attribute must simply exist)
UHF DAMA
Terminal Platform Terminal

Logon Frame
on device n/a (attribute must simply exist)

UHF DAMA
SRAP

model on device UHF_SATCOM_SRAP

equipment type on device
generic or phone or radio or JTIDS or
Media Gateway

Voice

interface type

equipment type

self-
description

on device

contains circuit_switched:Voice_LAN or
contains circuit_switched:Voice_WAN

is not Promina and is not Encryptor and is
not Multiplexer

equipment type on device generic or VTC Terminal

Video
Teleconfere
ncing (VTC)

interface type

equipment type

self-
description

on device

contains circuit_switched:Voice_LAN or
contains circuit_switched:Voice_WAN

is not Promina and is not Encryptor and is
not Multiplexer

At least one row must be satisfied to place the device in that particular layer. For example, a

device belongs to the ATM layer if it is a generic device; or if its interface type contains “atm:”

and it is a router or a switch; or if its interface type contains “atm:” and it is a Promina device.

Misconfiguration of the attributes in Table 3-2 will cause unroutable demands.

An example of some of the information that the CP will use in JCSS 9.0 is as follows:

• “eplrs” interface type on EPLRS ports

• “promina:WAN” interface type on Promina-100

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-22

• “multiplexer:mux_aggregate” interface type on multiplexer ports like FCC100v7

• “atm:*” interface type on ATM ports

• “frame relay:*” interface type on frame relay ports

• “Circuit_Switched:*” interface type on voice-capable ports

• “router” machine type on layer 3 crypto devices and any other IP router

• “IP” interface class on router IP ports

During CP routing, failure/recovery of a subnet, device, or link will be taken into account. To

use failure/recovery on an object, the user should use the “Edit JCSS Attributes” right-click

menu or manually configure the “Failure Recovery Configuration Node” located in the

Configuration OPFAC. Essentially, Failure/Recovery centers around setting the “condition”

toggle attribute located on all scenario objects. In a simulation, if the “condition” attribute is set

to “disabled” on an object, the object is considered failed. Therefore, the user does not need to

make any additional modeling changes for Failure/Recovery to work in CP. For more

information on using the Failure/Recovery feature, consult the JCSS User Manual.

3.4.3 Logical Views

Logical Views provide the ability to filter the network so that a user can look at particular layers

or technologies more closely. Logical Views will work for many of the JCSS device

technologies such as IP, Tactical Radios, Satellites, etc. and utilizes CP graphs and self-

description information (using the interface class and machine type) to determine the logical

connections between devices. Therefore, as CP is used to create the Logical Views, when a

model is created that works with CP it usually will work with Logical Views also. Logical

Views can then show the logical connection information visually to the user.

It is important to note the orange, logical links which are displayed the example Logical View

below (Figure 3-13). In the example case, this logical link is abstracting the layer-2 layer and

showing IP connectivity between end-stations and routers. What this link shows to the user is

that these routers can “talk” to each other through IP even though they are not physically

connected to each other. Also, logical links show information such as the physical links which

make up the connection, the overall date rate for the entire logical link, etc.

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-23

Figure 3-13: Example Logical View

3.4.4 Handling Models Modifying Message Sizes

By default, all new device models encountered by the analytical tools will be assumed to have no

effect on message size. This is not the case, for example, if the device adds a certain amount of

overhead, then the use of a surrogate is warranted. To surrogate a model means that the user

should take an existing model that works with the required feature, and derive a new version of

that model to behave similarly to the newly created device model. This derived model will load

the network properly in the analytical simulation, but should not be used in detailed simulations

such as DES. For DES, the user should use the newly created device model instead. In the case

of message size overhead, possible surrogates are KG-84, KG-194, KG-175, KIV-7, KIV-19,

IP_ATM_TACLANE, and NES. Each of the devices has a user-specified overhead attribute that

will increase the message size by a certain percentage. There are different connectivity

restrictions enforced by these devices, so the specific properties of each should be researched

when choosing the “closest match.”

3.4.5 Handling Specific Port Selection for Alternate Links Selection in the CP

When suggesting alternate links between devices, the CP will consider the following properties

of the device:

Does the device support the demand’s traffic type? This is determined by examining the

device’s packet formats and comparing them to a list of all the voice or data packet

formats. These two packet format lists are built from the set of voice and data packet

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-24

formats defined by the link entries in the LinkTypeMap.gdf file. If, for example, an

alternate link is being suggested to help the routing of a data demand and the device does

not support any of the entries in the data packet formats list, then no link will be created

to that device.

Does the device have a free port? If all of the ports on a device already have links

connected to them, then no new links will be created for that device.

Is there a link that supports the device’s packet format? Once the two endpoint devices

and ports are chosen, a common packet format supported by the ports on both devices

will be chosen. (If there is no common packet format, then the devices cannot talk to each

other and a new pair will be chosen.) An attempt will then be made to create a link that

supports the common packet format. No link will be created if there is no entry in the

LinkTypeMap.gdf file that supports the common packet format. For example, if the port

on device A supports “ckswpkt” and “custompk” and the port on device B supports

“phone_switch” and “custompk,” an attempt will be made to create a link that supports

“custompk.” If no such link type is defined in the LinkTypeMap.gdf file, no link will be

created.

Any connectivity rules beyond these are handled for a specific set of devices only. These devices

are the Mobile Subscriber Equipment (MSE), Promina Cell Express, and Internet Controller

(INC). In each case, finding free ports with a common packet format is not sufficient when

connecting those devices. Two MSE devices can be connected via their Digital Transmission

Group (DTG) ports only. Two Promina Cell Express nodes cannot be connected directly because

they require intermediate ATM devices, and two INCs can be connected via their ip_dgram_v4

ports only. If the new device has these types of restrictions, then the use of a surrogate from the

above list is warranted.

3.5 METHODOLOGIES FOR CREATING DEVICES FOR JCSS WITH DEVICE CREATOR

In addition to using the built-in model objects and creating derived models, the user can create

new device models using the Create Custom Device Model operation.

Device Creator allows the user to create several different types of network components,

including routers, bridges, hubs, workstations, servers, and switches. The following table lists the

device categories and the technologies or device types supported by Create Custom Device.

Table 3-3: Supported Device Classes

Device Category Supported Technologies or Device Types

Bridge • Ethernet (10BaseT, 100BaseT, 1000BaseX)
• FDDI

• Token Ring

Cloud • ATM
• Frame Relay
• SLIP
• Multiprotocol

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-25

Device Category Supported Technologies or Device Types

Fibre Channel
Devices

• Hub
• Switch
• Endnode
• Multihomed Endnode

Firewall • ATM
• Ethernet (10BaseT, 100BaseT, 1000BaseX), Ethernet LANE, and

EtherChannel
• FDDI
• Frame Relay
• SLIP
• Token Ring and TR LANE

Hub • Ethernet (10BaseT, 100BaseT, 1000BaseX)
• FDDI
• Fibre Channel
• Token Ring

LAN Model • Shared
• Switched

Mainframes • ATM
• Ethernet (10BaseT, 100BaseT, 1000BaseX), Ethernet LANE, and

EtherChannel
• FDDI
• Frame Relay
• Fibre Channel
• SLIP
• Token Ring and TR LANE
• Wireless LAN

Multihomed Host • Client
• Server

Multiplexer • Promina

Multi-Service Switch • Circuit Switched
• Ethernet (10BaseT, 100BaseT, 1000BaseX) and EtherChannel
• FDDI
• Frame Relay
• SLIP
• Token Ring
• Voice over ATM

Router • ATM
• DOCSIS
• Ethernet (10BaseT, 100BaseT, 1000BaseX), Ethernet LANE, and

EtherChannel
• FDDI
• Frame Relay
• SLIP
• Token Ring and TR LANE
• Wireless LAN

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-26

Device Category Supported Technologies or Device Types

Switch • ATM
• Ethernet (10BaseT, 100BaseT, 1000BaseX) and EtherChannel
• FDDI
• Fibre Channel
• Frame Relay
• LANE
• Multiprotocol Switch
• SSP
• Token Ring
• UMTS RNC

Vendor Device • 3Com
• Avici Systems
• Bay Networks
• Cabletron
• Cisco
• eXtreme Networks
• Fore Systems
• Foundry Networks
• Hewlett-Packard
• Juniper Networks
• Lucent (Ascend)
• Newbridge
• NEC
• Nortel Networks

Models created with the device creator have several advantages:

• They make it easy to configure new models for specialized needs and integrate them into

your network models.

• They create both a derived model and a base model, so that you may use either depending

on the modeling requirements.

• They support inheritance, so that changes to the original (parent) models can

automatically affect all models derived from it.

• Can be used as a baseline model so additional customizations (such as new modules,

process models, etc.) can be easily added. All interfaces, modules, self-description, etc.

will be properly configured for the user.

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-27

Figure 3-14: Create Custom Device Dialog

3.5.1 Model Names

As with derived models, the user can give a model any name that does not duplicate the name of

an existing base or derived model of the same type. For more information, see the OPNET

Modeler online documentation.

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-28

3.5.2 Creating a Custom Device

When creating a new model with Device Creator, you must set several argument options to

specify your model appropriately. Many of these arguments (such as model name, model list,

and icon name) are the same for all model types, but depending on the model class and the

protocol you select, you may need to specify other arguments. These arguments, their values, and

a description of each are listed in the following table.

Table 3-4: Device Class Arguments

Argument Value Description

ATM ports Maximum number of physical ATM links the model can
support

ATM QoS A, B, C
or D Buffer
Capacity

cells Buffer capacity for class A, B, C, or D traffic

Bridge Frame
Service Rate

bits/second Rate at which a bridge can process frames

Bridge Protocol
Data Unit Service
Rate

packets/second Rate at which a bridge can process BPDUs

Buffer Capacity bits Maximum queue size of a port

Client Custom
Application

Off

Sample Load
Client custom application load generated by the model

Client Database
Application

Off
Low Load
Medium Load
High Load

Client database application load generated by the model

Client E-mail Off
Low Load
Medium Load
High Load

Client e-mail application load generated by the model

Client FTP Off
Low Load
Medium Load
High Load

Client FTP application load generated by the model

Client HTTP Light Browsing
Heavy Browsing
Searching
Image Browsing

Client HTTP application load generated by the model

Client Remote
Login

Off
Low Load
Medium Load
High Load

Client remote login application load generated by the
model

Client Start Time seconds The time the client process begins to send traffic

Client Video
Conferencing

Off
Low Load
Medium Load
High Load

Client video conferencing application load generated by
the model

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-29

Argument Value Description

Client X-windows Off
Low Load
Medium Load
High Load

Client X-windows application load generated by the model

Ethernet ports Generic ethernet device that can be used for 10BaseT,
100BaseT, and 1000BaseX ethernet links

FDDI ports Maximum number of physical FDDI links the model can
support

Frame Relay ports Maximum number of physical Frame Relay links the
model can support

Icon Name N/A User-defined icon name

IP ATM Maximum
Data Rate

bits/second Data rate specification for creating traffic contract used to
set up the ATM connections

IP Forwarding Rate packets/second Number of packets an IP router can forward per second

Model Name N/A User-defined model name. This value defaults to
my_<device_type>.

Model List N/A User-defined model list. This value defaults to
my_model_list.

Port Count ports Number of ports on the model

Server
Configuration Table

N/A Services supported by this server

SLIP ports Maximum number of SLIP links the model can support

Switch Backplane
Speed

packets/sec The rate at which switch backplane (the internal switching
bus) operates. It governs the time it takes for an incoming
packet to reach the switch processor.

Switching Rate frames/sec Number of incoming frames that can be forwarded

Switch Port
Switching Speed

packets/sec The rate at which packets are switched from the switch
processor to the appropriate output port

Technology Ethernet
FDDI
Token Ring

The protocol that the device type is based on

Token Ring ports Maximum number of physical Token Ring links the model
can support

TPAL ATM
Maximum Data
Rate

bits/second Data rate specification for creating traffic contract used to
set up the ATM connections

Transport Address TPAL address TPAL address of the node. This address must be unique
for each node

3.6 COMPLIANCE FOR END-SYSTEM DEVICES

This subsection expects the reader to be familiar with the concepts of circuit switching. For more

details on circuit switching, refer to the Subsection 3.9. End-system devices can act as sources or

sinks for traffic. For IERs, the end-system device does not generate IER traffic on its own; it

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-30

relies on the OE for IER generation. A global repository stores all IER and thread related

information (parsed from the IER demands) which is accessed by keys. Each device (including

all Oes) can refer directly to each IER by keys located in the ier_info ICI which is received

through interrupt everytime an IER is generated. The keys are simple integer values that

uniquely identify a given IER and IER instance. Every end-system device that can send and

receive IERs must include an SE module to act as the source and sink for IER traffic.

Note: A remote interrupt provides a means of inter-process communication in OPNET modeling,

especially useful when two modules are not connected directly. In this case, because OE and SE

modules are not connected directly, remote interrupt is used for communication between their

process models.

The SE module generates packets and forwards them to lower layers. The layers below it

(underneath Layer 7) are responsible for routing the IER. End-system devices can also fire non-

IER (COTS) traffic. The COTS application and tpal modules implement this as the Application

Layer and Transport Layer, respectively.

Note: Although there are devices (multi-homed workstations and servers) that do perform the

dual tasks of serving application traffic and doing routing, these devices are excluded from the

current discussion.

3.6.1 Attributes

Table 3-5 gives the minimum set of attributes that an end-system device must have.

Table 3-5: JCSS Attributes for an End-System Device

Attribute Name Attribute Type Description

name String Specifies name of device

model String Specifies node model (e.g., computer, DNVT)

classification String Specifies security classification for device; JCSS
ships with a classification.ad.m file which
developers can use for their models.

Equipment_type Enumerated Specifies type of equipment

availability_status Toggle Indicates if device is available for communication

3.6.2 Self Descriptions

JCSS uses values from model Self Descriptions in many of its features. JCSS uses the value of

the “machine type” characteristic in a node self-description to categorize the node. For example,

the “machine type” is used by the Link Deployment Wizard and the Circuit Deployment

Wizard. It is also used by the Logical Views to determine the technology used by the node (IP,

radio, etc).

The Link Deployment Wizard uses the values of the “interface type” characteristic in node self

descriptions to determine if nodes may be connected to each other and what types of links the

node supports. An “interface type” characteristic is usually defined on each port group in a node

self-description.

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-31

JCSS uses the values of various other characteristics in self-descriptions. For example, the

“Nodal Mode” characteristic specifies some capabilities of TSSP satellite models. JCSS also

extracts the names and numbers of ports from node model self-descriptions for use in many

features.

For more information about Self Descriptions, refer to the standard online OPNET

documentation and Appendix U.

3.6.3 Required Modules

The modules needed by devices of certain types are provided in the following tables. If one of

the given protocol types is being modeled, then its corresponding modules are required. In

addition, end-system devices must have at least an SE module and transmitter/receiver modules.

Table 3-6 specifies the higher layer modules for a certain technology, and Table 3-7 specifies the

lower layer modules. A device is built by combining the necessary modules from the two tables

as specified. The SE module must have the name attribute set to “SE.” The OE uses the module

name to identify which module/process receives the IER interrupts.

3.6.3.1 Higher Layer Modules

All end-system devices capable of sending and receiving IER traffic will have an SE module to

generate the IER traffic. In addition, it may have protocol-specific modules such as the OPNET

Standard (COTS) models shown in Table 3-6. Please note this table is not exhaustive and

additional modules can be found in the OPNET Modeler online documentation.

Table 3-6: Higher Layer Modules for an End-System Device

Protocol Type Required Modules

TCP
tcp (tcp_manager_v3), ip_encap (ip_encap_v4), ip (ip_dispatch, version
7.0: ip_rte_v4)

UDP udp (rip_udp_v3), ip_encap, ip (ip_dispatch, version 7.0: ip_rte_v4)

IP Ip (ip_dispatch, version 7.0: ip_rte_v4), ip_encap

3.6.3.2 Lower Layer Modules

The OPNET Standard (COTS) protocols shown in Table 3-7 can be used as lower layer modules.

The process model in a module is specified in parentheses next to the name of the module. Please

note this table is not exhaustive and additional modules can be found in the OPNET Modeler

online documentation.

Table 3-7: Lower Layer Modules for an End-System Device

Protocol Type Required Modules

Ethernet
arp (ip_arp_v4), mac (ethernet_mac_v2), point-to-point receiver module, point-to-
point transmitter module

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-32

Protocol Type Required Modules

ATM

ATM_Call_Control (ams_atm_call_control), ATM_rte (ams_atm_rte), ATM_sig
(ams_atm_signaling), AAL (ams_aal_disp_v3), ATM_Layer (ams_atm_layer_v3),
ATM_trans (ams_atm_trans_v3), ATM_switch (ams_atm_sw_v3), point-to-point
receiver module, point-to-point transmitter module

Frame relay
FRAD (frms_frad_mgr_v2), point-to-point receiver module, point-to-point transmitter
module

Circuit switch point-to-point receiver module, point-to-point transmitter module

FDDI
arp, mac (fddi_mac_v4), point-to-point receiver module, point-to-point transmitter
module

Token ring
arp, mac (tr_mac_op_v2), point-to-point receiver module, point-to-point transmitter
module

Serial Line Internet
Proctocol (SLIP)

point-to-point receiver module, point-to-point transmitter module

Devices can be built by combining modules from the higher layer modules table with modules

from the lower layer modules table. For example, an end-system device using TCP/IP over

Ethernet can be built by combining the SE module and modules needed for TCP from Table 3-6

and the modules needed for Ethernet from Table 3-7. The types of transmitters and receivers to

be used depend on the physical layer of the device. Transmitters and receivers can be one of two

types:

• Point-to-point

• Radio

Such an end-system device with TCP/IP over Ethernet point-to-point transceivers would appear

as illustrated in Figure 3-15.

Figure 3-15: An Ethernet End-System Device—Node Model

SE modules

Higher layer

modules

Lower layer

modules

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-33

For end-system devices with radio interfaces, refer to Subsection 4.10.

It is possible to create devices with a certain transport protocol and another lower layer

technology. Such an end-system device can be created by combining the modules from Table 3-6

and Table 3-7. When combining modules from the two tables, sometimes it is necessary to

connect them by an interface module, shown in Table 3-8. Please note that this table is not

exhaustive and additional modules can be found in the OPNET Modeler online documentation.

Table 3-8: Interface Modules for an End-System Device

Higher Layer Protocol
Stack

Lower Layer Protocol
Stack

Interface Module Needed

ATM IPAL (ams_ipif_v4)

ATM (with LANE)
arp (ip_arp_v4), LANE_IF
(lms_lane_if_v3), LANE (lms_lec_v3)

Ethernet
ethernet (ethernet_mac_v2), arp
(ip_arp_v4)

Frame relay FRIPIF (frms_fr_ipif_v3)

TCP, UDP, IP

Serial IP (ip_dispatch)

For example, an end-system device using TCP as the transport protocol can have frame relay as

the MAC technology. Such an end-system device is shown in Figure 3-16.

Figure 3-16: End-System Device with Frame Relay as the MAC Technology—Node Model

Two end-system devices that talk to each other must have the same type of transport protocol. If

one of the two participating devices does not have a transport protocol, then the other must not

have it either. For example, if one of them uses UDP as the transport protocol, then the other

device must also use UDP as the transport protocol. An example of a valid end-system to end-

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-34

system connection is shown in Figure 3-17. The connection shown between the various

transmitters and receivers is logically bi-directional, just a way of representing bi-directional

connection between the involved transmitters and receivers.

3.6.4 End-System Devices Categories

3.6.4.1 Data Traffic Only

If the end-system device supports only data traffic, then it must have the network protocol stack

with the SE module, the Applications module coupled with the Transport Protocol Adaption

Layer (TPAL) and Central Processing Unit (CPU) modules, or both, as explained with examples

above. The SE module should have the name se_tcp or se_udp, depending on to which transport

layer module each connects. For COTS traffic, the TPAL layer should be connected to the TCP

and UDP modules and then to the Application module so that it serves as a go-between for the

Application and transport layer modules.

Figure 3-17: A Valid End-System to End-System Connection

3.6.4.2 Circuit-Switched Voice Traffic Only

If the device supports only voice calls, it does not need the network protocol stack. In JCSS end-

system circuit-switched devices (e.g., phone), it sends out a call-setup packet (packet format

cktswpkt) that may cause intermediate network devices to reserve bandwidth on the links and

intermediate devices for the duration of the call. Refer to Subsection 3.10.

If such a purely circuit-switched device connects to other packet-switched devices, such a

configuration requires use of multi-service switches (see Figure 3-18). Again, refer to Subsection

3.10 for more details.

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-35

Figure 3-18: Example of a Circuit-Switched End-System Device—Node Model

However, if the voice end-system device can handle the standard voice application instead of just

voice IERs, then it must include also Application, tpal, and CPU modules (see Figure 3-19).

Figure 3-19: Example of a Circuit-Switched End-System Device That Handles Voice Applications As Well As

Voice IERs

3.6.5 Interfaces and Packet Formats

When building a node model with interfaces of certain types, it is important to specify the packet

formats supported on that interface. The packet formats supported by an interface depend on the

MAC technology on that interface. If the created end device is to interface with a JCSS standard

model, then the developer needs to adhere to the packet formats on the MAC of the JCSS

standard model. Refer to “Appendix D: Packet Formats” for a list of the packet formats in the

JCSS standard models. Interfaces can also support custom packet formats created by a model

developer.

3.6.6 Interfacing with Other Classes

The end-system device interfaces with other device classes as follows:

3.6.6.1 Interfacing with the OE

The SE module is responsible for all interfacing with the OE inside the OPFAC. Upon receipt of

a remote interrupt from the OE with a code of

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-36

NwC_Ier_Key_Remote_Intrpt_Code_Fire_Ier_Instance and an ICI of type ier_info (see

Appendix E: Standard OPNET Interfaces and Packet Formats), the SE will retrieve the IER

information from the keys in the ICI and create an appropriate packet to send to the lower layers.

For details about interrupts, refer to OPNET Modeler online documentation, Simulation Kernel

manual, and the Interrupt Package chapter.

Figure 3-20 shows how the OE sends a remote interrupt to the SE.

Figure 3-20: Remote Interrupt from the OE to the SE

3.6.6.2 Interfacing with TPAL

If the end-system device supports standard voice or VTC applications over circuit-switched

environment, then it must interface with TPAL to learn when to generate application calls. Upon

receipt of a remote interrupt from TPAL with a code of TPAL_SE_APP_SEND and an ICI of

OE Process Model
Remote

Interrupt

to Sender

Node Model

Node Model

SE Process Model

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-37

type tpal_se (see Appendix E: Standard OPNET Interfaces and Packet Formats), the SE will

generate a call for the duration specified in the ICI.

3.6.6.3 Interfacing with Networking Equipment

The end-system device is not responsible for specifying the route taken by the IER. Routing is

taken care of by the networking equipment to which the end-system device is connected. The SE

module in the end-system device sends the packet down to the network protocol stack, which

may encapsulate the data and sends it out on the output interface.

The data rate attribute on the end-system device’s interfaces is typically set as “unspecified.”

The data rate is determined by the data rate of the link that is connected to this interface. If the

data rate attribute is set on the interfaces, it will require the user to connect a link that has the

same data rate as the value set on the interface for valid link connection. Also, the device on the

other end of the link has to have either an unspecified data rate or the same data rate as specified

on the interface of the first device.

3.6.7 Creating Custom Transport Protocols for End-Systems

The developer can create custom transport protocol models that can be integrated into the end-

systems device model. Transport protocol models require interfacing with the other models,

such as IP_Encap, TPAL, Application, OE, and SE. The custom transport protocol model can

interface with the application model directly. However, it is recommended to have the transport

protocol model interfaces with the application model through the TPAL model, as the primary

objective of the TPAL is to provide a basic, uniform interface between application and transport

layer models. Please see the OPNET Modeler online documentation for more information.

3.6.7.1 Creating Custom Transport Concerns

In order to create a custom transport model that can be integrated into JCSS device models, there

are several concerns that developers should aware of. First, the developers must modify current

SE models or develop a new SE model to interface with the new transport model. Currently,

JCSS only contains SE_udp and SE_tcp models to interface with transport protocol models.

Second, new packet formats must be defined for the new transport. Developers must make sure

the new formats are able to interface with other required models. On the other hand, the new

models also need to realize the packet formats that are used by other models. Lastly, developers

should also pay attention to the ICI format. Similar to packet format, the ICI format is the most

important medium for the model to communicating with each other. All newly developed and

currently existing ICI format should be able to support all required models. Please see the “TCP

Model User Guide” for more information.

Lastly, the OE is required to be modified to pass the IER to the newly defined transport model.

In JCSS, each IER is mapped to a corresponding transport protocol, such as TCP and UDP. The

OE uses the information to pass the IER to the corresponding transport model and the associated

SE model. Therefore, the OE should be modified to realize the new transport protocol.

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-38

IMPORTANT: The consequence of modifying the standard OE is serious, so please consult the

JCSS PMO before modification! Also, it is a good practice to backup the current OE model

before modification.

3.6.8 Handling Failure/Recovery

There are two ways of handling failure/recovery interrupts—implicitly and explicitly.

Failure/recovery can be explicitly handled by enabling the failure interrupts and recovery

interrupts process attributes of the SE module’s process model and setting them to “local only.”

By doing this, the SE module will receive failure/recovery interrupts whenever the condition

attribute of the node is changed. The SE module can use these interrupts to update the

availability_status attribute of the end-system device, preventing the OE from trying to use the

failed end-system device to send IERs.

If failure/recovery is implicitly handled, once the condition attribute is set to “disabled,” the

modules in the end-system device can no longer receive interrupts. Because the modules do not

get the failure/recovery interrupts, the availability_status attribute of the end-system device is

not updated, and the OE might try to send IERs using this failed device. In this case, the OE

registers the IERs as sent, and because the end-system device is failed, it does not register these

IERs as failed. If choosing this approach, additional functionality might be necessary to mark the

IERs as being failed. For documentation on setting the model attributes, refer to OPNET

Modeler online documentation, Modeling Concepts manual, “Process Domain” chapter, “Process

Model Attributes” section. For information about handling failure/recovery, refer to the

Modeling Concepts manual, “Network Domain” chapter, and “Modeling Node and Link

Failure/Recovery” section. During failure of a device, the device flushes any queues and initiates

the termination of any calls set up through it during the time of failure. The device also informs

the OE to record the IER failure statistic for affected IERS during this time. The device is also

required to tear down any connections it might have initiated for transmission of data IERs.

3.6.8.1 Handling Failure of Self

When the SE module in the end-system device receives a failure interrupt, it will:

• Stop transmitting and receiving IERs

• Update the availability_status attribute to “disabled”

• Inform the OE node about the failure of the IERs generated by itself

3.6.8.2 Handling Recovery of Self

When the SE module in the end-system device receives a recovery interrupt, it must update the

availability_status attribute to “enabled.”

3.6.9 Collecting Statistics

IER statistics are written in the Output Vector (OV) format as well as the Output Table (OT)

format. To enable the OE to do so, the IER Application Programming Interface (API) is used by

the end devices for reporting all statistics. Therefore, this means that Ses should inform their own

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-39

OE (i.e., the OE that sent the fire IER interrupt to the end station) about the status of a particular

IER so that statistics can be updated. For example, the “rcv_pkt” state of the se_udp process

model uses the following API call with the IER keys and the destination node’s object id for the

successful IER reception:

nw_ier_support_inform_ier_received ()

In the case of an IER failure, another example can be found in the se_trafgen process model, in

the process_message state’s Enter Executives:

nw_ier_support_inform_ier_failure ()

The following are example cases when an end system should use the IER API:

• When the end-system device tries to transmit an IER and fails:

o For Voice IERs, when the Acknowledgement (ACK) for a flood search is not

received within a specified time-out period or when the source is busy when the

ACK is received

o For Data IERs, when the connection is aborted by TCP\

o When the end-system device fails

• When a Data IER over a TCP connection or a Voice IER sent by it is received:

o When it receives a Data IER over a UDP connection

o When it did not get a teardown message for a voice call during the duration of the

call

3.6.10 JCSS Standard SE Models

The JCSS standard models include several SE models that can be used as a basis for most

required device modeling. The most commonly used versions are shown in Table 3-9. They

provide all of the required functionality for many of the JCSS devices and make use of the

provided APIs. Therefore, development of a new SE process model may not be required.

Table 3-9: JCSS SE Process Models

Process Model Description

cs_voice_se
Generates the various circuit-switched signaling packets in response to
VOICE IERs and voice standard applications. The parent module of this
process should have the name “se.”

prc_se
Generates radio packets in response to VOICE IERs. The parent module of
this process should have the name “se.”

se_link16_host
Generates radio packets in response to VOICE IERs. IERs are translated
into J-Series messages based on MIL-STD-6016C. The parent module of
this process should have the name “se.”

se_proc_mod
Generates data packets in response to DATA IERs for the JTIDS radio. The
parent module of this process should have the name “se.”

se_trafgen

Generates data packets in response to DATA IERs. Interfaces to TCP as
the transport protocol, relying on TCP connection close messages as an
acknowledgement of successful IER transmission. The parent module of
this process should have the name “se_tcp.”

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-40

Process Model Description

Se_udp
Generates data packets in response to DATA IERs. Interfaces to UDP as
the transport protocol. The parent module of this process should have the
name “se_udp.”

Voip_se
Generates the various Voice over IP signaling packets (H.323 and SIP) in
response to VOICE IERs and voice standard applications. The parent
module of this process should have the name “se.”

If a new end-system model is expected to interface with existing JCSS standard end-system

models, the matching SE process model should be used where possible. If required, a new SE

process model can be developed which provides the same interfaces.

3.6.11 Example: Constructing a Computer Model

Refer to the subsection 4.4. Wired End Device Example 2 for an example.

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-41

3.7 COMPLIANCE FOR LAYER 1 NETWORKING EQUIPMENT

Layer 1 networking equipment is physical layer devices used to model repeaters, encryptors, or

simply as delay elements in the network. This subsection explains how to build Layer 1

networking equipment.

There are three different types of networking equipment, depending on their functionality. The

following sections explain how to build Layer 1 networking equipment.

3.7.1 Attributes

Table 3-10 describes the minimum set of attributes that a Layer 1 networking device must have.

Table 3-10: Attributes for Layer 1 Networking Equipment

Attribute Name
Attribute

Type
Default Value Description

name String -- Inherent -- Specifies name of device

model String -- Inherent -- Specifies device model, for
example, CS_1005_1s_e_fr

availability_status Toggle Enabled Specifies whether the device is
available for communication

classification String Unclassified Specifies security classification
for device; JCSS ships with a
classification.ad.m file that
developers can use for their
models.

Equipment_type Enumerated Switch, router Identifies the device type

3.7.2 Required Modules

Layer 1 networking equipment has a processor module that accepts the packet from the receiver

module, processes the packet (adds a delay, encrypts it, etc.), and sends it to the transmitter of the

output interface. The type of transmitter and receiver modules will depend on the type of

physical medium to which the device will be connected—bus, radio, or point-to-point.

Figure 3-21: Example of Layer 1 Networking Equipment—Node Model

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-42

3.7.3 Interfacing with Devices

Networking equipment accepts data from end-system devices and interfaces with other

networking equipment to transmit it to the destination. Layer 1 networking equipment accepts

packets from a device (an end-system device or other networking equipment), processes them,

and sends them to the device connected on the other side. There is no routing or switching logic

in these devices.

When creating these devices, the user should use the same interface types and packet formats

that are used by the devices it can directly connect to through the use of links. Refer to

“Appendix D: Packet Formats” for a list of the packet formats in the JCSS standard models and

refer to “Appendix E” for a list of standard OPNET interface types.

3.7.4 Handling Background Traffic

The OE module in the OPFAC and the Application model of the end workstation invoke the IP

module through an API function call to generate the tracer packets. The tracer packets generated

by IP are routed over the network to the IP layer in the destination SE node. In the intermediate

devices in the network, the nodes may read and interpret the load represented by the tracer

packet before forwarding it further in the network. The traffic represented by the tracer packet is

used to artificially load the device (the queues, for example)—so explicit packets arriving at this

device are processed with the load in consideration. Refer to OPNET Modeler online

documentation (Modeling Concepts � Modeling Network Traffic � Working with Background

Traffic) for further information.

In the JCSS standard models that have undergone enhancement to interpret the information

carried in the tracer packets, this load from the tracer packet is induced in an input queue. The

input queue delays the explicit packet arriving before forwarding to the output queue. The model

developer may choose to implement a similar approach to handle tracer packet loads, or to

implement in some other variation, for instance, maintaining both loads (due to tracer packets

and the explicit packets) in the same queue. In either way, the objective is to introduce

processing delays for the explicit packets. Physical layer delays, such as transmission and

propagation delays, are accounted for in the standard pipeline stages. The developer may use the

TRC 170 node model as an example of a Layer 1 device capable of handling background traffic.

3.7.5 Handling Failure/Recovery

The model developer has the option of handling failure/recovery explicitly or implicitly.

If failure/recovery is handled implicitly, the OPNET Standard (COTS) failure/recovery node sets

the condition attribute to “disabled” when the Layer 1 networking equipment fails and the device

stops processing any interrupts. How this device failure/recovery is propagated to the other

devices in the network depends on the routing protocols in the network. The model developer

can handle the failure/recovery explicitly. By enabling the failure interrupts and recover

interrupts attributes of the process model and setting them to “local only,” the process model

gets an interrupt when the device fails/recovers. The following are some ways to handle

failure/recovery.

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-43

3.7.5.1 Handling Failure of Self

Processing of packets should be stopped. If voice calls are set up through the Layer 1 networking

device, then some cleanup might be necessary. In cases where the concept of logical links is not

used, the Layer 1 networking device itself can do the cleanup. In cases where logical links are

viewed by the network (like in JCSS), the edge devices (devices at the ends of a logical link) can

detect and perform the cleanup automatically for the networking device. For example, the edge

devices such as MSE or TTC-39 switches send keep-alive messages at regular intervals to detect

the failure of the logical link. When a process running inside a device detects failure, that process

(or another one that it triggers) terminates the voice calls (if any) set up over that logical link. For

data packets, the process flushes the queues on the Layer 1 networking equipment.

3.7.5.2 Handling Recovery of Self

The device should re-initialize itself and prepare for processing packets again.

3.7.6 Collecting Statistics

Throughput and channel utilization statistics are written when the Layer 1 networking equipment

sends out a packet. These statistics are to be written to OV using OPNET’s standard Statistic

package. Refer to the OPNET Modeler online documentation for detailed examples of how to

accomplish this. These statistics may be recorded by either the edge devices or the Layer 1

networking device, depending on whether the concept of logical links is used or not. In JCSS the

concept of logical links is used, which fits well in cases where explicit packets are not modeled,

for instance, during the duration of a voice call. For such cases, in JCSS the edge devices collect

these statistics. In cases where explicit packets are sent over the link through the Layer 1

networking device, for instance, data communication in JCSS, it might be more appropriate to

record these statistics at the Layer 1 device itself. For reporting statistics on the links connected

(including the load represented due to background traffic), the OPNET standard pipeline stages

may be used (they account for the tracer packet information received automatically). However, if

the links are wireless, then the node (either edge devices in case of logical links or the Layer 1

device itself, if done otherwise) writes the statistics and accounts for the background traffic load.

3.7.7 Example: Constructing an Encryptor Model

For an example of building a Layer 1 encryptor model, refer to the “4.5. Layer 1 Device

Example: Bulk Encryptor” subsection.

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-44

3.8 COMPLIANCE FOR LAYER 2 NETWORKING EQUIPMENT

Layer 2 networking equipment is devices that run a Layer 2 protocol. Switches and hubs are

classified as Layer 2 networking equipment. This subsection explains how to build Layer 2

networking equipment. There are three different types of networking equipment, depending on

their functionality. The following sections explain how to build Layer 2 networking equipment.

3.8.1 Attributes

Table 3-11 lists the minimum set of attributes that a Layer 2 networking device requires.

Table 3-11: Attributes for Layer 2 Networking Equipment

Attribute Name Attribute Type Default Value Description

name String -- Inherent -- Specifies name of device

model String -- Inherent -- Specifies device model, for example,
CS_1005_1s_e_fr

availability_status Toggle Enabled Specifies if device is available for
communication or not

equipment_type Enumerated Switch, router Identifies device type

3.8.2 Required Modules

Table 3-12 specifies the modules required for building Layer 2 networking equipment with

various interface technologies. The process model in a module is specified in parentheses next to

the name of the module. Please note this table is not exhaustive and additional modules can be

found in the OPNET Modeler online documentation.

Table 3-12: Modules Needed for Various Layer 2 Protocols

Protocol Type Required Modules

Ethernet eth_switch (bridge_dispatch_v2), mac (ethernet_mac_v2), rx, tx

ATM

ATM_Call_Control (ams_atm_call_control), ATM_rte (ams_atm_rte) (not
required for end edge devices such as ATM routers or ATM traffic sources),
ATM_sig (ams_atm_signaling), AAL (ams_aal_disp_v3), ATM_Layer
(ams_atm_layer_v3), ATM_trans (ams_atm_trans_v3), ATM_switch
(ams_atm_sw_v3), rx, tx

Frame relay
FR_mgmt (frms_mngmt_v2), FR_trans (frms_trans_v2), FR_switch
(frms_switch_v2), rx, tx

Circuit-switched
(JCSS)

circuit_switch (circuit_switch), rx, tx

FDDI fddi_switch (bridge_dispatch_v2), mac (fddi_mac_v4), rx, tx

Token ring stb_bridge_functions (bridge_dispatch_v2), mac (tr_mac_op_v2), rx, tx

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-45

Figure 3-22: Example of Layer 2 Networking Equipment—Node Model

Multi-service switches that have circuit-switched interfaces and packet-switched interfaces can

be constructed. Table 3-13 specifies the modules needed for such devices. The process model in

a module is specified in parentheses next to the name of the module.

Table 3-13: Modules Needed by a Multi-Service Switch

Interface
Technology

Modules Needed for a Switch with Circuit-Switched Interfaces and Packet-
Switched Interfaces with the Specified Interface Technology

SLIP
voice_dispatch, voip, udp (rip_udp_v3), ip_encap (ip_encap_v4), ip (ip_dispatch,
version 7.0: ip_rte_v4), SLIP interfaces

Ethernet voice_dispatch, voip, udp, ip_encap, ip, Ethernet interfaces

Frame relay
voice_dispatch, voip, udp, ip_encap, ip, FRIPIF (frms_fr_ipif_v3), FRAD
(frms_frad_mgr_v2), frame relay interfaces

ATM

voice_dispatch, voatm, ATM_Call_Control (ams_atm_call_control), ATM_sig
(ams_atm_signaling), AAL (ams_aal_disp_v3), ATM_Layer (ams_atm_layer_v3),
ATM_trans (ams_atm_trans_v3), ATM_switch (ams_atm_sw_v3), circuit-switch
interfaces, ATM interfaces

Token ring
voice_dispatch, voip, udp, ip_encap, ip, arp (ip_arp_v4), mac (tr_mac_op_v2), token
ring interfaces

FDDI voice_dispatch, voip, udp, ip_encap, ip, arp, mac (fddi_mac_v4), FDDI interfaces

3.8.3 Initialization

The switch module in the Layer 2 networking equipment will perform the following initialization

steps:

• The switch module will register itself in the process registry with the following attributes:

o Location (string)

o Protocol (string)

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-46

• The switch module must build switch tables with entries corresponding to its neighboring

switches. One way of building such tables is by using spanning trees. The code for building

spanning trees can be re-used from the OPNET Standard (COTS) models.

3.8.4 Interfacing with End-System Devices and Networking Equipment

Networking equipment accepts data from end-system devices and sends the data to the

destination end-system devices. The routing information available to the networking equipment

is local; it includes information only about devices that are connected to it directly and through

other lower layer (Layer 1) networking equipment. If the Layer 2 networking device provides

circuit capabilities, additional attributes will be required. These are documented in the Generic

Circuit API Section (3.14.1).

When creating these devices, the user should use the same interface types and packet formats

that are used by the devices that it can connect to. Refer to “Appendix D: Packet Formats” for a

list of the packet formats in the JCSS standard models and refer to “Appendix E” for a list of

standard OPNET interface types.

3.8.5 Supported Protocols

Depending on the MAC layer technology needed by the device, the model builder must use the

corresponding protocol stack. For creating an Ethernet switch, the model builder must have the

OPNET Ethernet protocol stack so that the switch will be interoperable with OPNET Standard

(COTS) Ethernet device models. OPNET provides support for devices running the following

MAC layer protocols:

• Ethernet

• Token ring

• FDDI

• Frame relay

• SLIP

• DSL

• Integrated Services Digital Network (ISDN)

• Wireless (802.11 WLAN, EPLRS, SATCOM, MIL-STD-188-220D, UHF DAMA,

TDMA, etc.)

3.8.6 Handling Failure/Recovery

The manner in which Layer 2 networking equipment handles failure/recovery depends on the

type of protocol it is running. The model developer has the option of handling failure/recovery

explicitly or implicitly.

If failure/recovery is handled implicitly, the failure/recovery utility sets the condition attribute to

“disabled” when the Layer 2 networking equipment fails and the device stops processing any

interrupts. How this device failure/recovery is propagated to the other devices in the network

depends on the routing protocols in the network.

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-47

If handled explicitly, by enabling the failure interrupts and recover interrupts attributes of the

process model and setting them to “local only,” the process model gets an interrupt when the

device fails/recovers. The following are some ways to handle failure/recovery.

3.8.6.1 Handling Failure of Self

Flush the queue modules (if the Layer 2 networking equipment has any).

Write out failure statistics for the voice IERs (if any).

3.8.6.2 Handling Recovery of Self

Send update messages to the neighboring Layer 2 networking equipment.

Rebuild the spanning tree.

3.8.7 Collecting Statistics

Throughput statistics are written when a packet is sent out, and queue size statistics are collected

when a packet arrives or leaves a queue module in Layer 2 networking equipment. The traffic-

dropped statistics are written out every time a packet is dropped from a queue of Layer 2

networking equipment. These statistics are to be written to vector files using OPNET’s standard

Statistic package. Refer to the OPNET Modeler online documentation for detailed examples of

how to accomplish this.

3.8.8 Example: Constructing a Multi-Service Switch

For an example, refer to the “4.6. Layer 2 Device Example: Multi-Service Switch” subsection.

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-48

3.9 COMPLIANCE FOR LAYER 3 NETWORKING EQUIPMENT

Layer 3 networking equipment is devices that run a network layer protocol. Routers are

classified as Layer 3 networking equipment. Every interface of this device has a different

network address. This subsection explains how to build Layer 3 networking equipment. The

current JCSS standard device models support only Ipv4 as a Layer 3 network protocol. All of the

subsections of this Guide dealing with Layer 3 protocols document the usage of IP.

There are three different types of networking equipment, depending on their functionality. The

following sections explain how to build Layer 3 networking equipment.

3.9.1 Attributes

Table 3-14 lists the minimum set of attributes that Layer 3 networking equipment must have.

Table 3-14: Attributes for Layer 3 Networking Equipment

Attribute Name Attribute Type Default Value Description

name String -- Inherent -- Specifies name of device

model String -- Inherent -- Specifies device model, for
example, CS_1005_1s_e_fr

availability_status Toggle Enabled Describes if equipment is available
or has failed

equipment_type Enumerated Switch, router Describes device type

ip addr index Integer 0

Index used for IP addressing and
dynamic routing. This attribute is set
on the streams into and out from
the IP module.

3.9.2 Required Modules

The only higher layer protocols supported by Layer 3 networking equipment are TCP, UDP,

Resource Reservation Protocol (RSVP), and various routing protocols over IP. But the

networking equipment can have interfaces running different MAC layer technologies. Table 3-15

specifies the higher layer modules required for Layer 3 networking equipment.

Table 3-15: Higher Layer Modules for Layer 3 Networking Equipment

Protocol Type Required Modules

TCP/UDP/routing protocols
tcp (tcp_manager_v3), udp (rip_ud_v3), rip (rip_v3), eigrp (eigrp), igrp
(igrp), bgp (bgp), ospf (ospf_v2), rsvp(rsvp), ip_encap (ip_encap_v4),
ip (ip_dispatch, version 7.0: ip_rte_v4)

All OPNET Standard (COTS) router models support a set of routing protocols—BGP, EIGRP,

IGRP, OSPF, and RIP. It is possible to have different routing protocols running on different

interfaces in the network. To make sure that all the OPNET Standard (COTS) routing protocols

are supported, it is necessary to have all the routing protocol modules in Layer 3 networking

equipment. The required modules specified above are interconnected as shown in Figure 3-23.

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-49

Figure 3-23: Example of Layer 3 Networking Equipment—Node Model

Table 3-16 specifies the possible types of interfaces for the networking equipment and the

modules needed for each interface technology. The process model in a module is specified in

parentheses next to the name of the module.

Table 3-16: Required Modules for Various Interface Technologies

Protocol Type Required Modules

Ethernet arp (ip_arp_v4), mac (ethernet_mac_v2), rx, tx

ATM

ATM_Call_Control (ams_atm_call_control), ATM_rte (ams_atm_rte), ATM_sig
(ams_atm_signaling), AAL (ams_aal_disp_v3), ATM_Layer
(ams_atm_layer_v3), ATM_trans (ams_atm_trans_v3), ATM_switch
(ams_atm_sw_v3), rx, tx

Frame relay FRAD (frms_frad_mgr_v2), rx, tx

FDDI arp, mac (fddi_mac_v4), rx, tx

Token ring arp, mac (tr_mac_op_v2), rx, tx

SLIP rx, tx

It is possible to create devices with a certain transport protocol and another lower layer

technology. Such networking equipment can be created by combining the modules from Table

3-15 and Table 3-16. When combining modules from the two tables, sometimes it is necessary to

connect them by an interface module, as shown in Table 3-17.

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-50

Table 3-17: Interface Modules for Layer 3 Networking Equipment

Higher Layer Protocol Stack Interface Technology Interface Module Needed

TCP, UDP, IP ATM IPAL (ams_ipif_v4)

TCP, UDP, IP Frame relay FRIPIF (frms_fr_ipif_v3)

3.9.3 Handling Security Classification

When connecting devices with different security classification levels, it is the responsibility of

the study analyst to connect them in such a way that messages traverse only networks with the

proper level of security classification (see Figure 3-24). Another option is to use encryption

devices. For example, when passing classified data over an unclassified network, the message

must be encrypted end to end. Lack of these encryption devices causes the simulation to assume

that the encryption is present implicitly. The advantage of actually modeling the encryption

devices would be increased fidelity for delay and throughput statistics.

Figure 3-24: Networks with Different Security Classification Levels

3.9.4 Interfacing with End-System Devices and Networking Equipment

Networking equipment accepts data from end-system devices and routes the data to the

destination end-system devices. The data rate attribute on the networking equipment’s interfaces

is typically set as “unspecified.” The data rate is determined by the data rate of the link that is

connected to this interface.

Networking equipment builds the routing information from routing updates sent by other

networking equipment in the network that are directly connected to it. If the model developer

uses custom IP routing protocols in the Layer 3 networking equipment, then when the

networking equipment receives routing update messages it must update entries in the IP common

route table using calls to the following functions:

Ip_Cmn_Rte_Table_Entry_Add ()

Ip_Cmn_Rte_Table_Entry_Delete ()

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-51

When creating these devices, the user should use the same interface types and packet formats

that are used by the devices that it can connect to. Refer to “Appendix D: Packet Formats” for a

list of the packet formats in the JCSS standard models and refer to “Appendix E” for a list of

standard OPNET interface types.

3.9.5 Supported Protocols

Depending on the MAC layer technology needed by the device, the model builder must use the

corresponding protocol stack. For creating an ATM switch, the model builder must have the

OPNET ATM protocol stack so that the switch will interoperate with OPNET Standard (COTS)

ATM device models. OPNET provides support for devices running the following protocols:

• Ethernet

• ATM

• FDDI

• Frame relay

• SLIP

• Token ring

• DSL

• ISDN

• Wireless (802.11 WLAN, EPLRS, SATCOM, MIL-STD-188-220D, UHF DAMA,

TDMA, etc.)

The following routing protocols are supported by OPNET Standard (COTS) networking

equipment:

• RIP

• IGRP

• EIGRP

• BGP

• OSPF

• Static routing

Additional routing protocols can be added; see the following subsection for more information on

this process.

3.9.6 Creating Custom Routing Protocols for IP

This subsection enumerates the required steps for writing custom IP routing protocols and the

issues involved with their use in a network with other routing protocols.

3.9.6.1 Implementing a Custom Routing Protocol

The custom routing protocol must register itself as an IP higher layer protocol with a call to the

function Ip_Higher_Layer_Protocol_Register () using the name of the protocol and an integer

with a value above 500.

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-52

During its initialization, the custom routing protocol must also call the function

Ip_Cmn_Rte_Table_Custom_Rte_Protocol_Register (), passing the name of the routing protocol

as a string. This will return a routing protocol ID to be used in subsequent route table function

calls. The protocol ID for a custom routing protocol has a value greater than 100.

The custom routing protocol will receive a remote interrupt with a code

“IPC_EXT_RTE_REMOTE_INTRPT_CODE” upon initialization of the IP process model. At this

time the interface table and routing table can be accessed via the process registry.

The custom routing protocols access the IP common routing table using calls to the following

functions:

Ip_Cmn_Rte_Table_Entry_Add()

Ip_Cmn_Rte_Table_Entry_Delete()

Ip_Cmn_Rte_Table_Entry_Update()

Entries to the route table will be made through calls to the function

Ip_Cmn_Rte_Table_Entry_Add(), with updates provided through the functions

Ip_Cmn_Rte_Table_Entry_Update () and Ip_Cmn_Rte_Table_Entry_Delete(). The existing

entries can be queried through calls to the Ip_Cmn_Rte_Table_Entry_Exists() and

ip_cmn_rte_table_lookup() functions.

These functions are defined in the external file

<opnet_dir>\<rel_dir>\models\std\ip\ip_cmn_rte_table.ex.c, and the function prototypes are in

<opnet_dir>\<rel_dir>\models\std\include\ip_cmn_rte_table.h, where <opnet_dir> is the folder

where OPNET is installed and <rel_dir> is the release directory (e.g., 15.0.A). For more

information, refer to OPNETWORK Session 1510: Understanding IP Model Internals and

Interfaces.

3.9.6.2 Issues with Using Custom Routing Protocols

There are some issues involved with using the custom routing protocols that the model developer

may address in the following suggested manner.

3.9.6.3 Lack of Route Redistribution Capability

Some routing protocols might have a lack of route redistribution capability. This means that

routes determined by these protocols cannot be used by other routing protocols and vice versa.

Route redistribution is the process by which routes determined by all routing protocols running

within a router node can be shared among each other.

This issue can be avoided in two ways:

1. Modifying functions in the following files to include this capability:

Ip_dispatch.pr.m (version 7.0: ip_rte_v4.pr.m)

ip_rte_v4.h

ip_cmn_rte_table.ex.c

ip_cmn_rte_table.h

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-53

2. Running the custom routing protocol on all interfaces in the network.

3.9.6.4 Lack of Route Table Import/Export Capability

The OPNET Standard (COTS) routing protocols allow the routes to be exported at the end of a

simulation and to be re-imported into the network for subsequent simulations. This reduces the

simulation run time. The model developer can add this functionality to the custom routing

protocol if desired.

3.9.7 Handling Failure/Recovery

The manner in which Layer 3 networking equipment handles failure/recovery depends on the

type of routing protocol it is running. The model developer has the option of handling

failure/recovery explicitly or implicitly.

If failure/recovery is handled implicitly, this sets the condition attribute to “disabled” when the

Layer 3 networking equipment fails and the device stops processing any interrupts. How this

device failure/recovery is propagated to the other devices in the network depends on the routing

protocol.

If handled explicitly, by enabling the failure interrupts and recover interrupts attributes of the

relevant modules and setting them to “local only,” the process model gets an interrupt when the

device fails/recovers. The following are some possible ways to handle failure/recovery.

3.9.7.1 Handling Device Failure

If the failure of the device itself is to be handled explicitly, then on receiving the failure interrupt,

the appropriate module may flush the queues.

3.9.7.2 Handling Device Recovery

If the recovery of the device itself is to be handled explicitly, then on receiving the recovery

interrupt, update messages may be sent to the neighboring routers to indicate that this networking

equipment has recovered.

3.9.7.3 Handling Failure of Neighboring Layer 3 Equipment

This failure may be handled implicitly by the routing protocol, which may update the routing

table entries that have routes via this failed router. This can be done by the routing protocol.

3.9.7.4 Handling Recovery of Neighboring Layer 3 Equipment

Similarly, this is also handled implicitly. On receiving update messages from the neighboring

networking equipment that recovered, the networking equipment may �redibilit routes to all

destinations through the recovered node and update the routing tables if the new route is better

than the existing routes.

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-54

3.9.8 Collecting Statistics

Throughput statistics are written when a packet is sent out, and queue size statistics are collected

when a packet arrives or leaves a queue module in Layer 3 networking equipment. The traffic-

dropped statistics are written out every time a packet is dropped from a queue of Layer 3

networking equipment. These statistics are to be written to vector files using OPNET’s standard

Statistic package. Refer to the OPNET Modeler online documentation for detailed examples of

how to accomplish this task.

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-55

3.10 COMPLIANCE FOR DEVICES WITH CIRCUIT-SWITCHED TECHNOLOGY

Circuit-switched voice devices are capable only of generating or handling voice calls. In general,

this Guide offers a great deal of latitude to the model developer wishing to develop circuit-

switched data models. To promote interoperability within the very generic notion of circuit-

switched voice communications, however, the Guide has developed the following standards for

circuit-switched voice components. There are no components that are classified purely as circuit-

switched devices. Circuit-switched devices can be end-system devices, generating and receiving

calls, or they can be networking equipment, switching calls between source and destination.

Depending on whether they are end-system devices or networking equipment, the model

developer must refer to the appropriate subsections, and make sure the device performs the

necessary functions specified in those subsections.

Note that the circuit-switched models employed in the JCSS standard models contain additional

functionality beyond the OPNET Specialized (COTS) Circuit-Switched model library. As such,

the Specialized Circuit-Switched model cannot be used in JCSS.

3.10.1 Attributes

Table 3-18 lists the minimum set of attributes that an end-system device capable of generating

circuit-switched calls should have.

Table 3-18: Required Attributes for a Circuit-Switched End-System Device

Attribute Name Attribute Type Description

Call bandwidth Double Specifies the call bit rate originating
from this end system

Maximum calls
allowed

Integer
Specifies the maximum number of
voice calls the device can support
simultaneously

If Layer 2 networking equipment is to be capable of handling circuit-switched calls, it requires

the attributes listed in Table 3-19.

Table 3-19: Required Attributes for Circuit-Switched Layer 2 Networking Equipment

Attribute Name Attribute Type Description

MSE topology mask String
Differentiates a Layer 2 circuit-switched
device from a Layer 3 router

3.10.2 Initialization

The switch model will construct a list of end-system devices connected to it. The switch model

also constructs logical links with its neighboring switches. These logical links are used while

performing voice call routing. Logical links are an abstraction for the path between two

neighboring circuit-switched devices. They do not exist in the real world, but are JCSS-specific

internal data constructs that keep track of available voice channels and/or available bandwidth on

the entire route between two neighboring circuit-switched devices.

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-56

3.10.3 Routing in Circuit-Switched Devices

This subsection describes the JCSS standard implementation of routing, using a Flood Search

Routing protocol. When a circuit-switched device makes a call to a destination, it initially sends

a query packet to the switch to which it is connected. The switch checks if the destination device

is connected to it. If not, it forwards the query packet to all the connected switches in the route to

the destination. The query packet is forwarded to the next hop until it reaches the switch to which

the destination is connected. A timer is scheduled on the switch to wait for the ACK.

When the query packet arrives at the switch to which the destination is connected, the switch

sends an ACK back to the source end-system device. The path taken by the ACK is the chosen

path. As soon as the source gets the acknowledgment packet, it gets the link where the call ACK

came from and sends out a CONNECT packet. If the CONNECT packet reserves bandwidth on

all the links to the destination and potentially bumps calls based on priority. If bandwidth is not

available on the link, then the switch writes an IER Failure statistic for the call trying to be set

up. If the switch bumps a lower priority call, an IER Failure statistic is written for the bumped

call. Once the call has been established, a global voice manager is used to synch all devices

along the path of the call. Once the call has been completed or failed, the global voice manager

will notify all devices that the call has ended. The global voice manager is implemented using

the global_voice_mgr.pr.m and nw_voice_mgr.ex.c.

The ACK packet reserves bandwidth on the links from the source to the destination. Once the

call is set up, no other packets are sent for the duration of the call. The call is released and the

reserved bandwidth is freed as the call duration timer expires.

Functions for route structure handling have to be created. These functions allow for route

copying, route destroying, creating pooled memory for route structures, and route reversing. The

external file flood_search_routing.ex.c contains functions for route structure handling, with the

function prototypes included in a header file flood_search_routing.h.

3.10.4 Circuit-Switched Links

JCSS standard circuit-switched models conceptualize links over Layer 1 transmission devices as

being “logical links.” One of the reasons for doing so is that there are no actual packets that are

sent over the network to model the voice call. These circuit-switched devices maintain

information about the links (which may be either wired or wireless) between the intermediate

Layer 1 devices. This information is built up during initialization by the edge circuit-switched

devices through a topology walk. This information is used when link voice throughput and

channel utilization statistics are written out, as well as during the call setup process.

3.10.5 Interfacing with Packet-Switched Networks

When a circuit-switched device has to connect to a packet-switched network, it has to go through

an intermediate device that is capable of interfacing with both circuit-switched and packet-

switched networks. Such intermediate devices are called multi-service switches (e.g., media

gateways).

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-57

When a multi-service switch receives a request to place a circuit-switched voice call over a

packet-switched network, it performs the following operations to interface with an IP network:

1. These multi-service switches publish their loopback IP address in the process registry;

every other multi-service switch can use this IP address to reach this gateway. Also the

gateway registers with the global voice manager discussed in the previous section.

2. When doing flood search routing, an ingress multi-service switch looks at all the multi-

service switches in the network and will pick only those that have advertised having a

route to the destination phone, as shown in Figure 3-25. Once it knows the gateways that

have a route to the destination phone, the multi-service switch opens UDP connections to

the loopback IP addresses of these multi-service switches (obtained from the process

registry) and sends the call query packet (encapsulated in an IP packet) to them. It also

records its loopback IP address in the call query packet.

3. An egress multi-service switch should record its own loopback IP address, de-capsulate

the IP packet, and flood the query in the circuit-switched network.

4. Only the ingress and egress loopback IP addresses are needed; routing in the data

network will be done as usual by IP with routing protocol.

5. The multi-service switch acts as the destination phone inside the circuit-switched

network. The job of the multi-service switch is to translate the different signaling

protocols during the course of the call.

6. Once the call is established, bandwidth is reserved and utilization numbers are updated in

the circuit-switched network only (no bandwidth reservation or link utilization update

will happen in IP and ATM networks). Once bandwidth is reserved and link utilization

numbers are updated in the circuit-switched network, the multi-service switch starts

generating voice packets according to the codec information configured to load the IP

network.

7. Once the call is completed or failed/bumped, multi-service switches in the route are

notified to stop generating voice packets through the use of the global voice manager.

For the actual models used with media gateways and Voice over IP, refer to the <JCSS

Installation Directory>\Sim_Domain\op_models\netwars_std_models\voip directory.

Figure 3-25: Circuit-Switched and Packet-Switched Network Intercommunication

3.10.6 Handling Failure/Recovery

To be able to handle failure/recovery, the processor modules in the circuit-switched devices must

have their failure interrupts and recovery interrupts attributes “enabled” and set to “local only.”

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-58

3.10.6.1 Handling Failure of a Circuit-Switched Device in the Network

When a circuit-switched device fails, it should clear all the calls and release the channel

(bandwidth) for the call. The IER statistics have to be written out and the IERs have to be

marked as failed. When a JCSS Layer 2 networking device with circuit-switched capabilities

handling voice calls fails, it informs the global voice manager and writes out the IER statistics.

The global voice manager then interrupts all devices along the path of the call and informs those

devices that the call has ended. Those devices then free their bandwidth for the call.

3.10.6.2 Handling Recovery of a Circuit-Switched Device in the Network

The device does not do anything special on receiving this recovery interrupt.

3.10.7 Collecting Statistics

The following statistics are relevant to circuit-switched models:

• Link level

o Link statistics are updated for the voice traffic also

• Channel level

o Voice channel utilization

• Circuit level

o Circuit throughput (also updated for voice)

o Circuit utilization (also updated for voice)

• Circuit-switched node-level statistics

o Bandwidth reserved (bits per second)

o Total calls blocked

o Total calls switched

o Active calls

o Low-priority calls dropped

• End-system node level statistics

o Call setup time (seconds)

o Active calls

o Total calls connected

o Total calls disconnected

o Total calls generated

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-59

3.11 COMPLIANCE FOR WIRELESS INTERFACES

The end-system or network equipment devices in JCSS can support both wired and RF radio

interfaces. In addition to the requirements for the class of device being built, radio interfaces

require additional requirements, which are documented in this subsection.

3.11.1 Attributes

A radio device needs the attributes shown in Table 3-20.

Table 3-20: Additional Attributes for Radio Devices

Attribute Name Attribute Type Default Value Description

antenna_pattern Typed file Isotropic
Specifies the antenna pattern to be used on the
radio device.

Modulation (per
channel)

Typed file —
Specifies the modulation table to be used to
look up the BER as a function of the signal-to-
noise ratio.

Power (per
channel)

Double —

Specifies the transmitting power for the radio
transmitter; this attribute will be promoted from
the channel attribute of the transmitter to the
node level.

Processing gain
(per channel)

Double —

Specifies the processing gain for the radio
receiver; this attribute will be promoted from the
channel attribute of the receiver to the node
level.

Min_frequency
(per channel)

Double —

Specifies the base transmitter/receiver
frequency for a channel; this attribute will be
promoted from the channel attribute of the
transmitter/receiver to the node level.

Bandwidth (per
channel)

Double —

Specifies the transmitter/receiver bandwidth for
a channel; this attribute will be promoted from
the channel attribute of the transmitter/receiver
to the node level.

Data_rate (per
channel)

Double —
Specifies the data rate on the channel in the
node; this attribute must be promoted.

Net_id
4
 (per

radio tx and rx
module)

Integer –1
When two radios share the same net_id, they
are in the same radio network. This extended
attribute must be promoted.

Spreading code

(per channel)
Double 0

Specifies the frequency hop group to which the
radio belongs.

Apart from these attributes, the pipeline stage
5
 attributes shown in Table 3-21 and Table 3-22

also must be set on the radio transmitter and receiver modules. The pipeline stage attributes are

required by OPNET’s radio pipeline stages. Most of the attributes defined in Table 3-20 are

4 This attribute is particularly important in radio broadcast networks where all the radios in the same broadcast network will

have the same net_id. Also, radios connected by the Line of Sight link will have the same net_id.
5 OPNET models packet transmission across communications channel using a special mechanism called the Transceiver

Pipeline. For more details on Pipeline stages, refer to OPNET Modeler online documentation, Modeling Concepts Manual,

Chapter 6: Communication Mechanisms, topic Comec.4: Communication Link Models

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-60

available on the radio transmitters and receivers. They should be promoted to the node level to

use the Scenario Builder features to create radio links and broadcast networks.

3.11.1.1 Transmitter Pipeline Stage Attributes

All of the attributes shown in Table 3-21 are of type Typed File.

Table 3-21: Pipeline Stage Attributes on a Radio Transmitter

Pipeline Stage
Attribute Name

Default Value Description

txdel model dra_txdel
Computes the transmission delay associated with the
transmission of a packet.

Rxgroup model dra_rxgroup
Determines the possibility of radio interaction between a
transmitter channel and a receiver channel.

Chanmatch model dra_chanmatch
Characterizes the type of interaction between a
transmitter channel and a receiver channel.

Closure model dra_closure
Dynamically determines the ability of a transmitter
channel to reach a receiver channel.

Tagain model dra_tagain
Computes the antenna gain provided by the transmitter’s
antenna module in the direction of a particular receiver.

Propdel model dra_propdel
Computes the propagation delay associated with the
transmission of a packet.

3.11.1.2 Receiver Pipeline Stage Attributes

All of the attributes shown in Table 3-22 are of type Typed File.

Table 3-22: Pipeline Stage Attributes on a Radio Receiver

Pipeline Stage
Attribute Name

Default Value Description

ragain model dra_ragain
Computes the antenna gain associated with the
receiver’s antenna for an incoming transmission.

Power model dra_power
Computes the received power for an incoming
transmission.

Bkgnoise model dra_bkgnoise
Computes background noise affecting the incoming
transmission.

Inoise model dra_inoise
Computes interference noise affecting the incoming
transmission.

Snr model dra_snr
Computes the signal-to-noise ratio for the incoming
transmission.

Ber model dra_ber Computes the BER for the incoming transmission.

Error model dra_error
Computes the number of bit errors in a segment of the
incoming transmission.

Ecc model dra_ecc
Determines the acceptability of an incoming
transmission.

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-61

3.11.2 Required Modules

A radio device requires a radio transmitter and a radio receiver for transmitting and receiving

data. An antenna module may be used if the modeling engineer wants to specify the antenna

pattern. If an antenna module is not present, the pattern is considered to be “isotropic” by default.

Figure 3-26: Example of a Radio End-System Device—Node Model

3.11.3 Initialization

There are no initialization steps specific to a radio device. If this is an end-system device with

radio interfaces, look for the initialization steps under Subsection “3.6. Compliance for End-

System Devices” as this section specifically deals with building end-system devices.

3.11.4 Interfacing with Other Classes

A radio device can talk to another radio device or a satellite device if the two devices are within

range and have matching frequencies, modulation, and data rates. Closure between the two

devices is computed by the closure pipeline stage.

The OPNET Simulation kernel manages the transfer of packets from the source to the destination

as a series of computations, each of which models particular aspects of the link behavior. These

computations are performed using pipeline stages. Each radio transmitter and receiver has a set

of pipeline stage attributes that can be changed to modify the behavior of the link.

A model developer building a radio device can specify these pipeline stages on the transmitter

and receiver to model the desired behavior. For more information about the transceiver pipeline

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-62

stages, refer to the OPNET Modeler online documentation, Modeling Concepts →

Communication Mechanisms → Communication Link Models section.

3.11.5 Interfacing with TIREM

Terrain Integrated Rough Earth Model (TIREM) is a set of libraries that facilitate modeling radio

interference due to terrain. This feature is enabled through calls from the transceiver pipeline

stages. (Files with the extension .ps.c implement pipeline stages.)

3.11.6 Restrictions in Building Radio Devices

There are some restrictions in building radio devices. Not all point-to-point interface types can

be replaced by radio interfaces. Table 3-23 enumerates the restrictions and changes needed to

build ports of different types with radio interfaces.

Table 3-23: Restrictions in Building Radio Devices

Interface
Technology

Restrictions Involved in Building Ports with Radio Interfaces

SLIP No restrictions. The point-to-point interfaces can be replaced by radio interfaces.

Ethernet
The point-to-point interfaces can be replaced by radio interfaces, and the behavior of
the Ethernet MAC module has to be changed. Refer to OPNET’s 802.11 (wireless
LAN) models for more information.

ATM
An ATM port’s point-to-point interfaces cannot be replaced by radio interfaces. A
node with just radio and point-to-point interfaces is created, and the ATM node is
connected by a point-to-point link to this node.

Frame relay This combination is currently not supported.

FDDI This combination is currently not supported.

Token ring This combination is currently not supported.

Figure 3-27: An ATM Device with a Radio Interface

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-63

Figure 3-28: Internal Representation of an ATM Device and Intermediate Node

3.11.7 Handling Failure/Recovery

There are no failure/recovery handling procedures specific to radio devices, although, if standard

interface technology is not used, the appropriate module should flush out the queues inside. In

JCSS models, currently the devices connected to the radio devices perform the IER cleanup

operations in case the radio device fails.

3.11.8 Collecting Statistics

Broadcast network utilization statistics are collected for broadcast radios.

3.11.9 Building Custom Pipeline Stages

When building a radio device, the model developer can use the OPNET Standard (COTS)

pipeline stages on the radio transmitters and receivers. Model developers wishing to customize

them to better suit their needs, may do so by creating custom pipeline stages. Custom pipeline

stages can be built based on the OPNET Standard (COTS) pipeline stages. For more information

about the stages, refer to the OPNET Modeler online documentation, General Models manual,

“Pipeline Stages/Radio Link” chapter.

3.11.10 Satellite Considerations

A satellite device can be modeled as a networking device with radio interfaces, as documented

above. The current JCSS standard device model library includes geosynchronous (geostationary)

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-64

satellites, together with various ground terminals. A geosynchronous satellite is modeled using a

radio device with an altitude set at 35,786 kilometers.

If the satellite device to be modeled is not geosynchronous but has another type of orbit, it must

be built as an OPNET satellite node. Designating a device as a satellite node type creates an

additional attribute that must be set, as shown in Table 3-24.

Table 3-24: Required Satellite Device Attributes for Moving Orbits

Satellite Device
Attribute Name

Attribute
Type

Default Value Description

Orbit Typed file None The orbit for the satellite device

When an orbit is specified, the node position information is ignored and the position at any point

in time is determined from the orbit.

3.11.11 JCSS Standard Geostationary Satellite Communications System Models

A satellite communications system can be modeled in two ways, either based on the JCSS

Standard Geostationary satellite model or built as a new stand-alone satellite communications

system. If a new stand-alone satellite communications system is developed, no additional

requirements beyond those listed above are required.

If satellite communications interoperability is required with the JCSS Standard Geostationary

satellite models, additional attributes are required. These additional attributes will provide a

mechanism for the configuration of communications through the Scenario Builder GUI.

Note that the ground terminal device model that can communicate with the JCSS Standard

Geostationary satellite models.

In addition to the attributes described below, the ground terminal model must have its

equipment_type attribute set to “Satellite terminal” in order for Scenario Builder to discover it

during link deployment and for the CP to recognize it during its runs.

The satellite and satellite terminal models employ the radio transceiver pipeline stages shown in

Table 3-25.

Table 3-25: Radio Transceiver Pipeline Stages

Stage Function Module File

0 Receiver Group Tx dra_rxgroup.ps.c

1 Transmission Delay Tx dra_txdel.ps.c

2 Link Closure Tx dra_closure.ps.c

3 Channel Match Tx dra_chanmatch.ps.c

4 Transmission Antenna Gain Tx dra_tagain.ps.c

5 Propagation Delay Tx dra_propdel.ps.c

6 Receiver Antenna Gain Rx dra_ragain.ps.c

7 Power Calculation Rx nwra_power_tirem.ps.c

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-65

Stage Function Module File

8 Interference Noise Rx dra_bkgnoise.ps.c

9 Background Noise Rx dra_inoise.ps.c

10 Signal to Noise Ratio Rx dra_snr.pr.c

11 Bit Error Rate Rx dra_ber.ps.c

12 Error Allocation Rx dra_error.ps.c

13 Error Correction Rx dra_ecc.ps.c

For an example, refer to subsection 4.12, Satellite Terminal Generic Example.

3.11.12 Generic Satellite Device Model (for Bent Pipe Links)

To learn how to create a device of this type, refer to subsection 4.12, Satellite Terminal Generic

Example.

3.11.13 Generic Satellite Ground Terminal Device Model (for Bent Pipe Links)

To learn how to create a device of this type, refer to subsection 4.12, Satellite Terminal Generic

Example”.

3.11.14 TSSP Satellite Terminal Device Model

To learn how to create a device of this type, refer to subsection 4.13, Satellite Terminal with

TSSP Example.

3.11.15 Broadcast Radio Considerations

Integrating a custom radio with the broadcast network framework involves modifying some files

that define this framework. JCSS refers to broadcast radios as those that share a medium access

via a protocol, such as a Time Division Multiple Access (TDMA)-based protocol.

The file <NW DIR>\Scenario_Builder\<OPNET Rel>\JCSS\rules\net_configs defines the types

of networks supported by the broadcast network. This file must have an entry for the custom

radio technology to identify its—

• Radio type (just a unique string)

• Classification by default

• Data rate by default

• MOP probe status by default

• Supported capacities

• Supported data packet formats

• Supported voice packet formats

The radio device model must also have properly named ports and port self-description. The port

names should conform to the formats—

“<technology name>_tx_<n>“ (for radio transmitters)
“<technology name>_rx_<n>“ (for radio receivers)

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-66

This will require a port description with the name of—

“<technology name>_tx_<start..n> / <technology_name>_rx_<start..n>“

The port self-description will require its interface type attribute value set to—

“radio_rt:<technology name>“

Lastly, the radio transmitter and receiver channels will need to support the packet formats

specified in the net_configs.

Figure 3-29: (Channel) Table

Each channel of the device to participate in broadcast networks will need to have the following

attributes promoted to the node level:

Data rate

Minimum frequency

Spreading code

Power (transmitter only).

3.11.16 EPLRS Radio Considerations

Integration of custom radio models with EPLRS radios in the first place requires using the

customized pipeline stages used by EPLRS radios. EPLRS radios use a Packet Error Rate (PER)

model as opposed to the standard Bit Error Rate (BER) model used in other radios. The

following is the list of pipeline radios used in EPLRS:

• rxgroup model: eplrs_rxgroup

• txdel model: eplrs_txdel

• closure model: dra_closure

• chanmatch model: eplrs_chanmatch

• tagain_model: NONE

• propdel model: dra_propdel

• ragain model: NONE

• power model: eplrs_power_no_rxstate

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-67

• bkgnoise model: dra_bkgnoise

• inoise model: dra_inoise

• snr model: dra_snr

• ber model: NONE

• error model: NONE

• ecc model: eplrs_per

EPLRS radios detect each other through exchange of Hello messages which are sent using

eplrs_hello packet format. Actual data is transmitted using eplrs_pdu packet format. An

eplrs_pdu packet can carry different number of payload bits depending on which waveform from

the set of 18 available waveforms is used by each needline. A custom radio model should use the

same waveform format as the one used by the waveform of the needline it is communicating

with.

EPLRS Radios use the 420-450MHz frequency range which can be divided in 5, 6, or 8 channels

based on the Channel Set attribute of the EPLRS_ENM node (Figure x). Therefore, if a custom

radio model is required to operate in all of the above modes, it should set the channels of its

transmitter module in software to accommodate different frequencies based on different channel

set options. Power level for all radios in a division is set in the Network Power Level attribute of

the EPLRS_ENM. In general, any custom radio node that needs to communicate with the EPLRS

radios in a division needs to read most of the information about the division from the attributes

of the EPLRS_ENM node corresponding to that division.

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-68

Figure 3-30: EPLRS ENM System Parameters Attribute

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-69

3.12 COMPLIANCE FOR LINK MODELS

Links connect devices in a network. JCSS supports two different kinds of links: physical links

that represent actual links that physically connect two devices, and links that only serve as

logical entities that represent a physical connection, such as two radio interfaces configured to

operate over the same frequency.

Both link types, physical and logical, display in the scenario. Although model developers can

develop devices that work with the existing framework of the logical links, such as satellite

terminals and Line of Site (LOS) radios, model developers outside of the JCSS program, the

target audience of this document, can only create new link models for physical links. Creating

logical links requires access to a layer of JCSS implementation not exposed as open source.

This subsection explains generically how to build a link model that represents a physical link

connecting two devices. An important concept to note here is that OPNET models packet

transmission across communication channels using a special mechanism called the transceiver

pipeline. Typically, model developers refer to this in the context of radio transmission, but

OPNET has a set of stages for point-to-point and bus transmission as well. This subsection

explains the use of the point-to-point pipeline.

Note: “Point-to-point,” in the context of the transceiver pipeline, simply means two endpoints of

a link, not necessarily the technology serial or Point-to-Point Protocol (PPP).

For more details on the transceiver pipeline mechanism, refer to OPNET Modeler online

documentation, Modeling Concepts Manual, “Communication Mechanisms” chapter, “Comec.4:

Communication Link Models” subsection.

3.12.1 Attributes

This subsection describes the minimum set of attributes a link must have, as shown in Table

3-26.

Table 3-26: Required Attributes on a Link Model

Attribute Name Attribute Type Default Value Description

name String -- Inherent -- Specifies name of link

model String -- Inherent --
Specifies link model, for example,
100BaseT

data rate Double — Specifies combined speed of data
transmission over all channels in link

channel count Integer Specifies number of channels in link

packet formats String All
Specifies packet formats supported by
link

closure model Typed file dpt_closure
Determines connectivity between
transmitter and receiver

coll model Typed file dpt_coll
Used to determine if a collision has
occurred on a link

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-70

Attribute Name Attribute Type Default Value Description

ecc model Typed file dpt_ecc
Determines whether a packet can be
accepted

error model Typed file dpt_error
Determines number of errors in a
packet

propdel model Typed file dpt_propdel
Calculates propagation delay between a
transmitter and a receiver

txdel model Typed file dpt_txdel
Calculates transmission delay
associated with transmission of a
packet. Default value is dpt_txdel.

The attributes closure model, coll model, ecc model, error model, propdel model, and txdel

model correspond to various pipeline stages.

3.12.1.1 Dependencies

The link model must support all packet formats supported by the transmitters and receivers in

the devices to which it will connect.

The link model must match the data rate supported by the transmitters and receivers in the

devices to which it will connect.

Failure to satisfy the above constraints will result in inconsistent links, and traffic cannot

flow over inconsistent links.

When creating a new link type, the LinkTypeMap.gdf file needs an entry for that new link

type for it to function with JCSS’ Link Deployment Wizard (LDW). The LDW uses this

file to match links to appropriate ports. JCSS maintains this file under <JCSS

DIR>\User_Data\Rules.

Usually the data rates on the transceivers are left as “unspecified,” which means the data rate

taken by the transceivers during the simulation will be the data rate of the link.

3.12.2 Building Custom Pipeline Stages

When building a link model, model developers can use the OPNET Standard (COTS) pipeline

stages. If model developers wish to customize them to better suit their needs, they may do so by

creating custom pipeline stages. Custom pipeline stages can be built based on the OPNET

Standard (COTS) pipeline stages. For more information about the OPNET Standard (COTS)

pipeline stages, refer to the OPNET Modeler online documentation, General Models manual.

Note that if a pipeline stage drops a packet where a non-ACK-based protocol, such as UDP,

serves as the transport protocol, the pipeline stage must write out the failure statistic for the IER.

A link model can have model attributes, and the model developer can write code in the pipeline

stages to deal with these. An example of a model attribute is background utilization, which

allows the user to specify utilization on the link as a percentage of the total link bandwidth. This

is a way of loading the link with traffic in addition to the IER traffic, and it allows the user to

study the link performance under varying loads. The pipeline stage dpt_propdel_bgutil

uses the background utilization attribute. The background utilization attribute can be imported in

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-71

JCSS using the COTS Traffic import of the Cisco eHealth Traffic. For further details, refer to the

JCSS User Manual.

3.12.3 Handling Background Routed Traffic

The model developer has to specify pipeline stages on the link models that can handle tracer

packets generated from the end-system IP module. OPNET Standard models have pipeline stages

that can handle the load represented in a tracer packet and accordingly subject explicit packets to

appropriate transmission and propagation delays. These pipeline stages record the statistics on

the links with the appropriate background load specified on them. Refer to the

dpt_propdel_bgutil and dpt_txdel_bgutil pipeline stage models with the OPNET

Standard models as a baseline for creating custom pipeline stages that support background routed

traffic.

3.12.4 Handling Failure/Recovery

A link model does not do anything itself to handle its failure/recovery. The devices to which the

links are connected handle a link’s failure/recovery.

3.12.5 Building Simplex Links, Buses, and Bus Taps

The process of building simplex links, buses, and bus taps is the same as building duplex links.

In the Link Model editor, there is a field called “Link Types.” Depending on what type of link is

needed, one of the available link types is chosen. The possible types of links that can be created

are:

• ptsimp (point-to-point simplex)

• ptdup (point-to-point duplex)

• bus

• bus tap

The radio links including the satellite links and broadcast networks created in the Scenario

Builder do not have an associated link model. They are notional links where the communication

is established using correct settings for the radio device model attributes.

3.12.6 Collecting Statistics

A link model cannot be programmed to collect statistics. In OPNET, strictly speaking, there is no

process model (code) within a link model (lk.m). The simulation kernel collects statistics on the

link model.

Although a user can define statistic handles in a process model and write to them in a link model

(pipeline stage), the pipeline stage needs to get a reference to the handle, and this can be done via

the oms_pr_* kernel procedures. Other ways exist, but most model developers use this

mechanism.

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-72

3.12.7 Documentation

To document a link model, the following information must be provided in the Comments section

of the Interfaces option in the Link Model Editor:

General Description of the Link Model: Provide a brief description of the link model.

Link Interfaces: Documents the types of devices to which this link connects.

Data Rate: Specifies the data rate for this link.

Packet Formats: Specifies the packet formats supported by this link.

Comments: Gives any additional comments or restrictions on using this link.

The self-description information must be set on the link models. This information, although

currently not used by the Scenario Builder, may be used to get interface type information

(equivalent to packet formats).

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-73

3.13 COMPLIANCE FOR UTILITY NODES

Utility nodes provide a simplified and unified location for information about a network. They do

not represent actual devices in the network; rather, they represent information about a network.

3.13.1 Attributes

Table 3-27 and Table 3-28 give the minimum required and optional attributes for utility nodes.

Table 3-27: Required Attributes for Utility Nodes

Attribute Name Attribute Type Description

name String Specifies name of utility node

model String Specifies device model

Table 3-28: Optional Attributes for Utility Nodes

Attribute Name Attribute Type Description

utility_technologies String A list of packet formats supported by models
using utility node

End node (N)
6
 String Specifies full hierarchical name of an end

node, where ‘N’ is an integer value (1, 2,
etc.) These attributes are only mandatory if
needed by the utility node. Attributes named
as such can be placed within compound
attributes to build a table.

3.13.2 Self Description

Self Description must be added to any Utility Node used in the network. Many of the Scenario

Builder features will read the Self Description and ignore the Utility Node when performing

operations. This is ideal because the Utility Node is only used for configuration and is not an

actual device. To signify that a node is a Utility Node, the user should put the value Utilities

inside the machine type attribute in the core Self Description of the Utility node model.

3.13.3 Required Modules

The required modules depend on the purpose of the model. They should be designed to work

with multiple instances of the same models so a simulation will not be confused by the presence

of several of the same utility modules.

3.13.4 Interfacing with Other Classes

A utility node interfaces with other classes using any OPNET-supported techniques, including

the OPNET process registry, which allows for the publishing of information that is available to

other models, global variables, and structures or directly setting attributes of other objects. The

6 For example, if a utility node should act only on particular end nodes, then it may have the attributes end node (1) and end

node (2). The values of these attributes will be the full hierarchical names of ed1 and ed2.

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-74

models using the utility nodes should be designed to work with multiple instances of the utility

node.

3.13.5 Interfacing with the Scenario Builder GUI

The utility_technologies attribute is used for objects that will be setting end node (N) attributes.

The utility_technologies attribute must contain a listing of all supported packet formats that are

used by the end nodes. The Scenario Builder GUI will then use this information to create a pop-

up list of devices within the scenario that also support this packet format. This mechanism is for

the convenience of the user. The user can then select from this list to fill in all end node (N)

attributes. A good example of this would be a circuit configuration utility with an attribute called

circuit_config and subattributes called end node (1), end node (2), and bandwidth (bps). With a

utility_technologies attribute set to “cs_special” and the circuit_config attribute promoted, the

JCSS Scenario Builder user of this model would see pull-down menu options under the

circuit_config attribute for the end node (N) attributes of every device in the JCSS Scenario that

supports packet format “cs_special.” In this way, the user would have an easy way to set up

“cs_special” circuits.

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-75

3.14 API AND FRAMEWORK

3.14.1 Generic Circuit GUI API

3.14.1.1 Purpose

JCSS features a wide array of circuit models that require circuit configuration. These include

Prominas, FCC-100, TSSP, and N.E.T. SCREAM and SHOUTip devices, among others. In

previous versions of JCSS, users were required to use several different circuit configuration

wizards for different types of models (and therefore circuits). This process was not very

extendable and users had a difficult time using circuit devices in JCSS. Because of this, JCSS

7.0 introduced the Generic Circuit Wizard which also contains a generic API and workflow.

This feature allows any node model with circuit requirements to easily integrate with the

Scenario Builder, Capacity Planner and DES features. It also provides a common workflow

between all circuit devices no matter the type of circuit. The section below provides specific

information on this API and how users can intergrate with it. It should be noted to work with the

API and functionality, certain attributes and settings will be required in the circuit based node

models. Also, an external data file describing the circuits used by the node models must be

created so the device can work with the Generic Circuit Wizard.

3.14.1.2 Node Model Requirements

In order for the circuit based node model to function, a value for the “machine type” must be

specified in the self description. This attribute will associate the device with the external data

description files. For each node model, the user will also need to define a node-level compound

attribute called “Circuit Configuration”. The attribute must define two sub-attributes which

include “Local Port” and “Circuit Speed”. Also, it is recommended that the user should implant

active attribute handlers for the “Local Ports” attribute to prevent users from inadvertently

changing the circuit configurations. All circuit configurations should be performed through the

Generic Circuit Wizard.

3.14.1.3 Path Model

A new path model “nw_circuit” is used to represents circuits in JCSS. Inside the “nw_circuit”

path model, there are the following attributes:

• Circuit Type: Describes the circuit type and is critical since certain devices may support

more than one type of circuits.

• Port A & B: Source device port and Destination device port name.

The Port A/B attributes will contain values mapping to the Circuit Configuration > Local Port

attributes for each of the end devices that are connected to the path. Unlike OPNET link objects,

OPNET path objects attach only to nodes and not to their ports. This means that the specified

attributes must be correctly populated for the proper operation of the circuits. Also, as each end

device does not contain attributes that specify the other remote port on the remote device, the

Port A/B attributes alone must record the port assignment for the circuit.

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-76

Figure 3-31: Path Port Associations Diagram

The ‘A’ and ‘B’ designations refer to the first and last nodes listed for the circuit by the OPNET

topology functions. These functions list the nodes of a circuit in a consistent order throughout

the life of the object, so Port A and Port B can be consistently associated to the correct end

devices without using the names of the devices.

3.14.1.4 Data Description Files

The user also needs to create a data description file for each “machine type” value specified by

the circuit based devices. These files will allow the Scenario Builder to support new devices by

listing the circuit types supported by the devices and describing the node attributes that are

important to circuit configuration. Some of the node attributes will be associated with particular

circuit types. The Scenario Builder will allow circuits between two devices only when the

devices define at least one common circuit type in their data description files.

Each file will have an XML format similar to the following:

<MachineType>

 <CircuitTypes>

 <CircuitType>

 <Name>Promina</Name>

 <Color>blue</Color>

 <Attributes>...</Attributes>

 </CircuitType>

 </CircuitTypes>

 <Attributes>

 <Integer>

 <Name>Call priority</Name>

 <DefaultValue>7</DefaultValue>

 <LowerBound>0</LowerBound>

 <UpperBound>15</UpperBound>

 </Integer>

 <String>

 <Name>Call type</Name>

 <DefaultValue>Permanent</DefaultValue>

Node

A

Node

B

Path

Port A: l_pt_1

Port B: l_pt_0

Circuit Configuration

l_pt_0

l_pt_1

…

…

Circuit Configuration

l_pt_0

l_pt_1

…

…

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-77

 <AcceptedValues>

 <Value>Permanent</Value>

 <Value>Demand</Value>

 </AcceptedValues>

 </String>

 </Attributes>

</MachineType>

The file must declare at least one circuit type, but attributes are optional. The circuit type values

will be stored in the Circuit Type attribute of the circuit’s path object. The optional Color

element is a special attribute that allows circuit types to have predefined colors.

All attributes specified in the data description file must be sub-attributes of the Circuit

Configuration attribute, so the attribute names should be relative to that attribute. For example,

Call priority above is actually the Circuit Configuration > Call priority attribute on a Promina

node. When a circuit in the Scenario Builder accesses these node attributes, it will access the

row of the “Circuit Configuration” attribute that corresponds to itself by matching its Port A/B

attribute to the node’s Local Port attribute.

The files are organized around machine types rather than circuit types primarily because the

attributes in the description are more likely to be specific to the node model than to the circuit.

However, this approach will require all devices with the same machine type to support the same

set of circuit types and the same set of attributes.

A data description file may be located in any directory specified in the “mod_dirs” preference

and must have a name of the form “<machine type>.circuit.xml”. This requirement restricts

machine type values to be valid in filenames.

3.14.1.5 Circuit API

The Circuit API is a set of utility functions designed to get miscellaneous information in DES.

This API can be used by any circuit based device which uses the nw_circuit path objects to

define circuits.

Circuit API functionality includes:

• Getting remote device

• Getting remote port

• Remote IP or ATM address

• Getting circuit speed

• Getting selected circuit path (if applicable)

• Getting current voice load

Circuit API functions are declared in nw_circuit_api.h and defined in nw_circuit_api.ex.c. Use

case examples include: circuit interface module (cir_intf.pr.m), CTP (ctp_dispatch.pr.m),

SCREAM (bbs_dispatch.pr.m), Promina (pro_node_manager.pr.m), and others.

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-78

3.14.1.6 Circuit Interface Module

The Circuit Interface Module is an optional plug and play module for circuit based devices that

are used in DES. If used, one module is required for each circuit port.

This module provides support for:

• Interface with JCSS circuit switched voice calls

• Explicit/hybrid packet generation to represent voice call load on the circuit

• Collection of circuit level statistics (circuit level utilization, throughput)

• Generation of hybrid packet

The Circuit Interface Module is currently used by CTP and SCREAM device to load the network

for voice calls. The following is an example of the Port Configuration Table attribute on the

Circuit Interface Module. This attribute is used to configure the module for simulation.

Figure 3-32: Circuit Interface Module Port Configuration Table

3.14.2 IP Auto Addressing

IP Auto Addressing is a run-time IP subnet establishment that assigns an IP address to each IP

interface during simulation startup. Each IP device will graph-walk over each active IP interface

to discover all of its neighboring IP interfaces to be placed inside the same IP subnet. The

majority of this implementation comes from standard OPNET library and are declared in

ip_auto_addr_sup_v4.h and defined in ip_auto_addr_sup_v4.ex.c. There is additional support

for JCSS devices in nw_custom_ip_auto_addr.ex.c, and nw_ip_modification_support.ex.c.

3.14.3 Hybrid API

Hybrid packets are used to represent a large number of explicit packets during simulation.

Instead of sending thousands of packets to model a network load, a single tracer packet can be

sent on a network to represent a large amount of packets. The advantage is that the simulation

runs faster as there are fewer events and packets even though the network is still loaded properly

(such as the device queues, links, etc.). Also, many statistics (such as queuing delays, end-to-end

delay, utilization, etc.) will be updated accurately in comparision with sending explicit packets as

the tracer packet will continue to use the actual protocols and processes defined on the devices in

the network. Some of the disadvantages are that in high loss environments or failure studies, the

tracer packet could be lost and the network may not take into account the load the tracer packet

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-79

represented. Also, as each packet is not sent, certain sensitive statistics such as jitter cannot be

calculated accurately.

Regardless, the Hybrid API can be used by any model in DES which has an IP/ATM stack to

gernerate tracer packets dynamically. The API has functions which are similar in nature to the

standard Packet Creation APIs provided by OPNET. This module has functions to:

• Generate a single tracer packet with given bits/sec (bps) and packets/sec (pps)

• Generate a train of tracer packets with given bps, pps for given period of time with given

tracer generation interval

• Change the bps/pps of a defined train of tracer packets

• Change the bps/pps of a defined train of tracer packets to account for explicit packets

The API functions are declared in nw_oms_basetraf_src.h and defined in

nw_oms_basetraf_src.ex.c. The following screen shots display how SHOUTip (using the

fsr_to_voip and voip_to_voip process models) uses explicit and hybrid packets to model VoIP

traffic in a network:

Figure 3-33: Explicit Traffic

Figure 3-34: Hybrid Traffic

3.14.4 Link Deployment Wizard

The Link Deployment Wizard (LDW) provides a quick and easy way to deploy links such as

wired, radio, SHF satellite links, and GBS satellite links. The objective is to have the user utilize

a consistent workflow for all device types where the user is given correct link defaults to avoid

mis-configuration. This includes selecting two devices and initiating the wizard through the

menu options or shortcut. Depending on the devices selected, different information is used to

display potential link configurations to the user:

• For both wired and radio links, the wizard uses the device self-description (interface

type and machine type), as well as, the LinkTypeMap.gdf file to give possible link

selections. For wired and radio based custom models, the user can easily integrate the

64 Kbps voice call Using encoder scheme, 100-200

packets/sec are generated to

represent voice call

64 Kbps voice call 1 hybrid packet/sec to represent

100-200 packets

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-80

model with this functionality. Refer to Appendix T for more details on how to use

self-description properly.

• The SHF/GBS satellite links use a combination of device attributes (such as

Equipment Type, Home Satellite, Channel Config, and Nodal Mode) to populate the

wizard. These wizards are specialized to cater to the JCSS satellite model suite.

Users will have a more difficult time integrating with these wizards unless they use

identical attribute names and values.

To integrate wired and radio devices with LDW, the user will need to configure their custom

devices to use the proper self-description attributes and values. Secondly, the user must make

sure that the LinkTypeMap.gdf file has at least one compatible link defined. The file contains a

list of relevant links, their appropriate data rates, and other additional information which is used

by the wizard primarily to filter the links and populate the default data rates for the device pair.

During LDW operation, the wizard uses the following workflow:

• After the user has selected two OPFACs or two devices, the wizard will match the

interface type attribute of the port group self-description to find common technologies.

• Based on the common technologies (which are displayed in the Select Port Group drop

down menu), the wizard will find the corresponding matching links. Depending upon the

selected technology, the wizard will show valid links, source and destination ports, and

the default data rates. For each technology, the wizard:

o Uses the LinktypeMap.gdf file to get a list of wired or radio links

o Checks each link using the interface type attribute of self description of the link

model to see if it can support this technology

o Finds matching/free ports (on each device) for each common technology

Figure 3-35: Link Deployment Wizard Dialog

3.14.5 Broadcast Network Framework

The Broadcast Network Wizard allows the user to correctly configure radio models that have

broadcast network functionality. As part of this feature, the wizard performs the following

operations:

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-81

• By specifying an XML file for each type of radio, the user can set the correct defaults,

configurations, etc. for a given radio.

• Once the user deploys a group of radios into a scenario and uses the Broadcast Network

Wizard, the wizard will check for common models of operation and look at the

appropriate XML file for information.

• This wizard will then display a table of attributes relevant to each common mode (with

default values and ranges for acceptable values). As these are specified in the XML file,

the values are easily changeable and will only show the correct settings to the user to

avoid mis-configuration.

• The Broadcast Network Wizard will then use the values set by the user inside the wizard

to correctly configure each device in the scenario and deploy a broadcast network.

Currently, all JCSS radios use this functionality to deploy Broadcast Networks.

In the Broadcast Network Framework, the XML file contains the following information:

• Modes of operation (waveform used by radio e.g. HAVEQUICK I/II, etc)

• Attributes which needs to be configured

• Default value for each attribute

• Range of acceptable values

Each file will have an XML format similar to the following example shown below. In this case,

the example below is for the SINCGARS radio model and the XML file is called

SINCGARS.xml. The naming of the XML file should use the following schema <Radio Model

Name>.xml.

<ModesofOperation>

 <Mode>

 <Name>sincgars</Name>

 <Attributes>

 <Double>

 <DisplayName>Default Frequency</DisplayName>

 <InternalName>min frequency</InternalName>

 <DefaultValue>30</DefaultValue>

 <DisableValue>promoted</DisableValue>

 <LowerBound>30</LowerBound>

 <UpperBound>88</UpperBound>

 <UnitTag>MHz</UnitTag>

 </Double>

 <Double>

 <DisplayName>Channel Bandwidth</DisplayName>

 <InternalName>bandwidth</InternalName>

 <DefaultValue>5</DefaultValue>

 <DisableValue>promoted</DisableValue>

 <AcceptedValues Open=”true”>

 <Value>5</Value>

 <Value>6.25</Value>

 </AcceptedValues>

 <UnitTag>KHz</UnitTag>

 </Double>

 <Double>

 <DisplayName>Data Rate</DisplayName>

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-82

 <InternalName>data rate</InternalName>

 <DefaultValue>16000</DefaultValue>

 <DisableValue>promoted</DisableValue>

 <AcceptedValues Open=”true”>

 <Value>75</Value>

 <Value>150</Value>

 <Value>300</Value>

 <Value>600</Value>

 <Value>1200</Value>

 <Value>2400</Value>

 <Value>4800</Value>

 <Value>16000</Value>

 </AcceptedValues>

 <UnitTag>bps</UnitTag>

 </Double>

 </Attributes>

 </Mode>

</ModesofOperation>

3.14.6 Wireless Configuration Node

The Wireless Configuration Node inside the Configuration OPFAC can modify the BER, PER,

ECC, and Antenna Pattern behavior using the Node Groups attribute. This attribute allows the

user to select profiles to represent the given Wireless pipeline stage (i.e., BER, PER, etc.). The

functionality of the Wireless Configuration Node includes:

• User can import values from text file

• Allows for “playback” of live exercise data

• Values can change dynamically during the simulation

• Changes only effect the Member radios for this attribute

All JCSS radios work with this new functionality. For custom radios, the user can utilize the

APIs in the jcss_wireless_config_support.ex.c external file to modify the custom pipeline stages.

For examples, see the dra_ber, dra_ecc, and dra_error pipeline stages.

The example below shows how to modify BER:

JCSS MODEL DEVELOPMENT GUIDE V4.0

3-83

Figure 3-36: Wireless Configuration Node Modification of BER

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-1

4 EXAMPLES

This section discusses the approach a model developer should take to build a device model, a

networking protocol, and so forth. Each step in the approach is illustrated using an example

device or protocol. These examples serve as a code reference for the developer to develop other

models and include a detailed discussion at the code level to help developers understand the

underlying concepts and methodology to develop similar, new models.

Please note that this is not a discussion on the use of the OPNET Modeler’s various editors
7
 and

model hierarchies. The OPNET Modeler development environment is used to develop the

models.

The discussion is based on certain assumptions about the device model or the protocol in hand.

These assumptions are discussed in the “High-Level Design” subsection of the corresponding

code example.

Supplemental files for each of these examples, including the relevant node models, process

models, external C code, and header files are provided separately for reference.

7 Please refer to the OPNET Modeler’s online documentation on the Node Editor and Process Editor in the Editor Reference

section.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-2

4.1 TRAFFIC MODEL EXAMPLE

The basic ideas behind creating traffic models were discussed in section 3.1. The purpose of this

section is to introduce the major steps that were used to support the Net-Centric Enterprise

Service (NCES) application models development with ACE whiteboard.

NCES applications are based on Service-Oriented Architecture (SOA). In order to model the

dynamic interaction characteristic of NCES applications, the following approach was applied.

First, the developers defined the scope of the model and gathered the corresponding architectural

information and testing data from the application developers and associated programs. Second,

the developers analyzed the collected data and identified all possible dynamic interactions/cases

of the applications. Third, the developers created a time sequence diagram, as shown in Figure

4-1, to document the dynamic interactions.

Figure 4-1: Time Sequence Diagram Example

The next step was to apply the time sequence diagram to design the traffic model architecture.

The architecture included the following information: number of tiers, tier names, reusable

interactions, message sizes, message interarrival periods, and interaction logics. In the final step,

the developer used the architecture to create the application models in ACE whiteboard and

apply Python scripts to implement interactions logics. Please refer to “ACE Whiteboard

Tutorial: Modeling an Application using Logic Scripts (Advanced)” in OPNET documentation

for more examples.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-3

Please contact Defense Information Systems Agency (DISA) GE34 for detailed NCES Modeling

and Simulation (M&S) information.

Other than SOA applications, ACE Whiteboard can also be used to model the dynamic

interactions of operational scenarios that include logical decisions, such as the following

Communities of Interest (COI) publish and subscribe operational scenario:

1. An intelligence cue of type X arrives at a command center. Data is posted on the X-COI

web site.

2. An alert is sent to all members of the X-COI who subscribe to that kind of cue.

3. Some members of the X-COI are available, others are not. (Some are off-shift; some are

already involved in other incidents, perhaps of the same type or perhaps of different

types.) The ones who are available say so (e.g., with messages in the X Chat Group).

4. The available X-COI members download material from the web site.

5. The X-COI has a teleconference.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-4

4.2 ROUTING PROTOCOL EXAMPLE

The following subsection discusses the issues that a developer confronts when interfacing a

custom routing protocol with standard protocol stack.
8
 A code-level discussion is presented on

the various steps a developer needs to take to create a working device model that includes

custom routing.

4.2.1 High-Level Design

Although a developer can select from a range of algorithms when developing the routing

protocol itself, the following discussion deals with how to make this algorithm interoperate with

other standard technologies such as the IP and transport layers, which are already modeled in the

standard model library that comes with the OPNET Modeler.

The following are the design decisions
9
 made for the protocol under discussion:

Protocol Type: The routing protocol is a distance-vector protocol.

Routing Metric: The routing metric is hop counts.

Routing Updates: The routing updates are sent at regular intervals and when the network

topology changes. When a router receives a routing update that includes changes to an

entry, it updates its routing table to reflect the new route.

Timers: Route timers are implemented for this routing protocol, including the Route

Timeout Timer and the Garbage Collection Timer.

Layer 3 Technology: The Layer 3 technology used here is IP.

The Routing Element
10

 “RE” represents this custom routing layer for the device under

discussion. This is interfaced with the IP layer. Typical Layer 3 networking equipment is shown

in Figure 4-2.

8 For more information on the OSI layer (protocol stack), please refer to Section 2, Prerequisites for Designing and Building

NETWARS Models of Model Development Guide v.1.4 for the suggested networking references.
9 These design decisions give the reader ideas on what the basic tenets are on which the custom routing protocol under

discussion is based on and may not be included in the following discussion.
10 Routing Element “RE” is just an arbitrary name chosen for discussion here and should not be misinterpreted as being a

routing protocol for NETWARS. Also, the user should not draw any analogy between the NETWARS’ SE or OE.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-5

Figure 4-2: Sample Layer 3 Networking Equipment

In this figure, isis, rip, ospf, igrp, eigrp, and bgp represent the actual routing protocols. The RE

module can be added at the location of the “rip” module because this routing protocol closely

resembles our RE based on the high-level design decisions taken earlier. The intention is to look

closely at the process model inside this module that performs the various interfacing functions in

which we are interested.

Register the Routing Protocol: This is required because the custom routing protocol

requires a distinctive ID that it will later use when modifying the route entries in the IP

Common Route Table.
11

Make the Routing Protocol Available: The routing protocol should be available to be

configured on the interfaces of the router.

11 IP Common Routing Table refers to the routing table information that the routing device (e.g. router) has. This common

routing table is populated by one or more routing protocols.

This module houses the IP

implementation for the

device. It is referred as

“IP” or “IP module” in the

following discussion.

Module of interest houses

the process model for the

custom routing under

discussion.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-6

Initialization: The routing protocol must access the IP module of this router and retrieve the

information stored by the IP in the process registry.
12

 This gives the routing protocol

information regarding the gateway status of the device, interface information, and so

forth. Here, the routing protocol can initialize the routing tables for the first time.

Routing updates: The IP common route must be updated with the entries that the routing

protocol may want to add or delete.

The following subsections provide detailed discussion on the topics listed above. At the end of

following discussion, the reader should have developed a fair understanding on how interfacing

with the IP is done for a routing (custom) protocol.

4.2.2 Interfacing with the IP Discussion

4.2.2.1 Registering the Protocol

The protocol needs to register itself in the OPNET Model Support (OMS) process registry and

also with IP. Both these steps need to be performed upon receiving the “begin sim” (begsim
13

)

interrupt.

The function that is used to register the routing protocol with IP is—

int Ip_Cmn_Rte_Table_Custom_Rte_Protocol_Register (char* custom_rte_protocol_label_ptr).

This function returns a unique integer that is used as the routing protocol ID. This unique routing

protocol ID is used for all calls to Ip_Cmn_Rte_Table API
14

 functions.

4.2.2.2 Initialization of the Routing Protocol

After registering the protocol with the IP as discussed in Subsection 4.2.2.1, the IP sends remote

interrupts to all the routing protocols registered with it.

The remote interrupt received from the IP is as follows:

While registering in the OMS process registry, the attribute named protocol of the process handle

must be set to same string used for registering with IP.
15

 The following section of the code is an

12 The information stored in the process registry can be retrieved by the other process models. Please refer to the OPNET

Modeler documentation on the Process Registry under General Models | OPNET Model Support package for details on how

to use process registry.
13 Please refer to OPNET Modeler documentation on Event Schedule Simulation under Modeling Concepts | Modeling

Framework for more information on the begsim interrupt.
14 Details on the API are provided in Section 4.2.2.4.
15 Code where IP does the OMS process registry not shown.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-7

example of how to register the routing protocol in the OMS process registry. The start time

attribute in the following code refers to the start time for the routing protocol; this could be an

attribute on the custom routing protocol process model.

To perform some other functions, including the process of finding which interfaces have this

routing protocol enabled, the module needs to get the process registry information of the IP. The

string “ip” needs to be used to discover IP-registered process registries.

The information retrieved above includes gateway/router status of the node, interface

information, IP route table, and so forth. From the IP process registry, the custom routing

protocol can then identify the interfaces on which it is enabled. This is a two-step process:

1. Get a pointer to the data structure storing the IP information and retrieve information

such as interface information, IP common route table,
16

 etc.

16 This ip_route_table pointer is needed every time the routing protocol needs to modify the IP common route tables with its

entries.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-8

2. Loop through the list of interfaces maintained by IP. If the routing protocol was

enabled on a particular interface, then its protocol ID is present in the

“routing_protocols_lptr” list of that interface. For each entry access, enter a new

route
17

 (of “0” cost) into the IP common routing table.

Note that the “IpC_Rte_Custom”constant is used to check whether the interface is using Custom

Routing Protocol. This enumerated value comes from IpT_Rte_Protocol enumeration defined in

the ip_rte_v4.h header file of the OPNET standard model library.

4.2.2.3 Support for Routing Protocol Configuration

All the router devices in OPNET/JCSS have parameters available for configuration (as part of

the IP Routing Parameters device attribute). To change any of this attribute’s properties, as is

done in this section, open the ip_dispatch.pr.m file in OPNET Modeler and open its model

attributes (Interfaces -> Model Attributes). This particular attribute includes information such as

router ID, loop-back information, interface information, and so on as shown in Figure 4-3.

17 Please refer to the function rip_rte_new_entry_add() of rip_v3 process model of the OPNET standard model library for

details on how to add a new route entry to the IP Common Route Table. Also refer to Section 4.2.2.4 for details on the APIs

for the IP common route table.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-9

Figure 4-3: IP Routing Parameters Attribute

Certain parameters can be at higher levels of granularity, on an interface basis. This information

includes parameters such as the IP address information, the routing protocol, and the QoS

profile. This is where the user can configure which routing protocol to use for that interface (as

shown in Figure 4-4).

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-10

Figure 4-4: Interface Information Attribute

In order to use the custom routing protocol, the IP module’s process model (ip_dispatch) must be

updated. The model attribute “Routing Protocol” must be edited
18

 to include the custom routing

protocol (IP Routing Parameters | Interface Information | Routing Protocol(s)). A new symbol

map must be added for this attribute
19

 (as shown in Figure 4-5).

Figure 4-5: Routing Protocol Attribute Properties

18 Adding a new attribute to the process model does not require the developer to compile the process model.
19 To make this change available during the simulation, the process model must be saved. No recompilation is necessary.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-11

The “loop-back interfaces” attribute must also be updated in a similar way to include the custom

routing protocol.

4.2.2.4 IP Common Route Table API Functions

These API functions can be used by the custom routing protocol to interact with the IP common

routing table and modify the entries when the protocol finds a change in the route entry. The

functions shown in Table 4-1 can be used to insert and remove routes into/from the common

route table.

Table 4-1: Available IP Common Route Table API Functions

Route Management API Description

Ip_Cmn_Rte_Table_Custom_Protocol_Register
(char* custom_rte_protocol_label_ptr)

Registers the custom routing protocol with the
common route table. A unique protocol_id is
returned for accessing the route table.

Ip_Cmn_Rte_Table_Entry_Add
(IpT_Cmn_Rte_Table* route_table,

 void* src_obj_ptr,

 IpT_Address dest,

 IpT_Address mask,

 IpT_Address next_hop,

 IpT_Port_Info
20

 port_info,

 int metric,

 int proto,

 int admin_distance)

Adds a route entry to the common route table.
This function checks for an already existing
entry.

Ip_Cmn_Rte_Table_Route_Delete (

 IpT_Cmn_Rte_Table* route_table,

 IpT_Address dest,

 IpT_Address mask,

 int proto)

This function is used to delete an entire
destination entry from the IP Route Table. This
deletes all the route table entries that this
destination may have.

Ip_Cmn_Rte_Table_Entry_Delete
(IpT_Cmn_Rte_Table* route_table,

 IpT_Address dest,

 IpT_Address mask,

 IpT_Address next_hop,

 int proto)

This function is used to delete a next hop from
the entry from the IP Route Table.

Ip_Cmn_Rte_Table_Entry_Exists
(IpT_Cmn_Rte_Table* route_table, IpT_Address
dest, IpT_Address mask, int admin_distance)

This function determines whether a route exists
in the common route table.

Ip_Cmn_Rte_Table_Entry_Update
(IpT_Cmn_Rte_Table* route_table,

 IpT_Address dest,

 IpT_Address mask,

This function is used to change the metric
associated with a current route table entry. The
entry for the given destination is searched for
the next hop given, assuming a matching

20

 The port_info structure tells IP which outgoing interface needs to be used to reach the specified next_hop. This structure

contains two fields: intf_index and intf_name. The intf_index is the index of the interface in the interface table maintained

by IP, and the intf_name is the name of the corresponding interface. This structure can be populated using the

ip_rte_addr_local_network function. Please refer to the “ip_cmn_rte_table.h“ and “ip_rte_support.h“ for the definition of the

structure and the declaration of the function, respectively.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-12

Route Management API Description

 IpT_Address next_hop,

 int proto,

 int new_metric)

protocol ID, and then the metric associated with
the given next hop is changed.

4.2.2.5 Function Arguments:

The arguments for these functions are discussed below:

route_table: Pointer to the IP common route table

src_obj_ptr: Pointer to the entry in the source routing protocol; can be set as OPC_NIL for

custom protocols

dest: IP Address of the destination network

mask: Subnet mask of the destination network

next_hop: IP address of the interface that should be used as the next hop for the destination

addressed entered

port_info: Contains the “addr_index” of the interface used to reach the next hop

metric: Metric value assigned to this next hop; this is the cost associated with the next hop
21

proto: The unique protocol that entered this route
22

; the protocol ID, obtained from

Ip_Cmn_Rte_Table_Custom_Rte_Protocol_Register, in case of a custom routing

protocol

admin_distance: The preference associated with this entry.

4.2.3 Notes

Following are some other useful notes that may help the developer of the custom routing

protocol.

4.2.3.1 Simulation Attributes
23

IP Routing Table Export/Import.:
24

 This attribute can be used to export the routes

developed by the routing protocol; a text file (*.gdf) is generated in the primary

21 The custom routing protocol may implement its own metric, the way of determining cost (e.g., hop count, link bandwidth).
22 Because this API is entering the route to the IP common route table where more than one routing protocol may enter a route

to the desired destination, this protocol ID distinguishes the routes added by different routing protocols.
23 Please refer to the OPNET Modeler online documentation (Modeling Concepts → Process Domain) for details on the

simulation attributes.
24 The simulation attribute can be added in the “start_scm” batch file (located at Sim_Domain\bin) where the simrun

executable is called (e.g., IP Routing Table Export/Import 1).

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-13

mod_dirs.
25

 To use the already existing routes, this attribute should be set to “2” (as

opposed to “1,” for the export).

IP Dynamic Routing Protocol: This simulation attribute can be set if the custom routing

protocol needs to be run over the complete network. This preference set here takes

precedence over the local specification.

25 This is the mod_dirs attribute for the env_db file of the simulation domain. For details on the mod_dirs preference and

setting environment attributes, please refer to OPNET online documentation (Modeling Concepts → External Interfaces →

System Environment).

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-14

4.3 WIRED END DEVICE EXAMPLE

4.3.1 Problem Statement

The objective is to build
26

 an end node model that generates and receives data IERs. The

following subsection discusses in length with the help of a code example how the process model

implementation works for such a node model.

4.3.2 High-Level Design

4.3.2.1 Node Model Discussion

In this particular example, the following high-level decisions (assumptions) are made for the end

device.

Transport Protocol. TCP is the supported protocol for the transport layer. Other options are

UDP or a custom transport protocol.

Layer 3 Protocol. IP is used as the Layer 3 protocol.

Routing. Routing is not performed by the end device, therefore, no routing protocol

decisions have to be made.

Lower Layers. Ethernet is the supported data-link layer technology.

An application layer must be designed to interface with the transport layer. The System Element

“SE” represents the application layer in the JCSS end-device models.

With this information, the high-level node model representation would be similar to the one

represented in Figure 4-6.

26 Please refer to the Model Development Guide v3.1, Subsection 3, Compliance for End System Devices, on the approach and

methodology for creating an end-device model.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-15

Figure 4-6: End-Device Node Model

The node model in Figure 4-6 is the actual node model of the JCSS standard node models;

“NW_ethernet_wkstn_adv”
27

For details on how to design the node model for an end-device model, please refer to the “3.6.

Compliance for End-System Devices” subsection. The following discussion about the process

model development assumes that the minimum required attributes
28

 for the end-device are set.

4.3.3 Detailed Design: Event Response Table

The process model is designed to satisfy the functionality of the device node discussed above. A

functional process model diagram is presented at the end of this subsection.

4.3.3.1 Module Context and Functionality

Context:

In almost all cases, process models describe the behavior of a single module within a node

model, consisting of many modules.
29

 The role of the process model can then generally be

described by the interactions that it has with the other modules in the node model. From the point

27 Please refer to Figure 3-7 (Ethernet_wkstn_adv—Node Model) of the Model Development Guide v3.1.
28 Please refer to Section 3, Compliance with End-System Devices, for the set of minimum attributes required for an end-

device model.
29 Please refer to the NETWARS Model Development Guide, Section 3, “NETWARS Component Classes,” for discussion on

the top level component classes and “interfaces.”

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-16

of view of other modules in the node model, only the external “black-box” behavior of their

process model(s) is of concern, not their internal implementation. It is therefore an important first

step in the development of a process model to identify the other system components (modules)

with which it must interact.

In case of an end-device node model, the “se” module must interact with the following other

modules (refer to Figure 4-7):

oe (of the OE node model)

tcp (Transport Layer Protocol of the end device node model).

Figure 4-7: Interfacing Modules of “se”

Functionality:

Because the development of the process model for the se module is discussed in the following

subsections, the functions of a “System Element” are enumerated below so that it can be related

to the event response table developed for the process model. The main function of the se module

is to interact with the OE and the tcp module and perform the following functions:

• End-device selection (OE)

• Traffic generation

• Handling of TCP connections

• Traffic reception

• Handling of failure/recovery

This high-level functionality is represented in Figure 4-8:
30

30 Please refer to Figure 4-17: Sample Workflow Diagram for SE Process Model of the Model Development Guide v3.1.

Operational
Element (oe)

System
Element

(se)

Transport
Protocol

Operational
Element (OE)

System
Element

Transport
Protocol

Receive OE message to

generate traffic

Acknowledge IER was received

Inform OE of IER reception

Open/close TCP connections

Send traffic

Handle TCP signaling messages

Receive traffic (IERs)

……

End Device Model OE Model

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-17

Figure 4-8: High-Level Functions of the “se_tcp” Module

The “se_tcp” module uses a single process model called “se_trafgen” which is developed in the

following subsections (although it is possible to have multiple process models to perform the

same function). For further details, refer to the OPNET online documentation (see the section

titled “Process Domain” under the Modeling Concepts menu).

4.3.3.2 Events

The Simulation Kernel (e.g., Failure/Recovery interrupts) or another process within the same

process hierarchy may call upon the se_trafgen process model to respond to an interrupt. In both

cases, however, an event must first occur for the se_tcp module that encompasses the process

model. Logical events may be generated from three types of sources:

1. modules outside the node model

2. other process models within the same node model

3. the process model itself

There is no general method for determining the interrupts of a process model; however, the

activities of the encompassing module (in this case se_tcp) as a whole and the interactions of the

module are a good starting point. The first goal of this stage is simply to determine which logical

events this process model must be prepared to receive.

Table 4-2 lists all the possible events that the se_trafgen process model can receive, their source,

and the communication mechanism.

Table 4-2: Event Description Table

Logical Event Event Name Event Description

Generate traffic OE_INT This event describes the Oes informing the se_tcp to fire
an IER.

IER Acknowledgement IER_ACK This event is the acknowledgement of an IER

Receive traffic INCOMING_PKT This event is the reception of the packet from the lower
layers.

Receive TCP signaling TCP_MESSAGE These are the tcp handshake messages that are sent from
the tcp module.

Device failure FAILURE This is the failure information sent to the se_tcp module
from the simulation kernel.

Device recovery RECOVERY This is the recovery information sent to the se_tcp module
from the simulation kernel.

The following table lists the events identified in the table above, with their source and the

interrupt type used by the source to inform the “se_tcp” of the event.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-18

Table 4-3: Event Communication Mechanisms

Source
Event Name

Node Module

Communication
Mechanism

31

OE_INT OE oe Remote Interrupt

IER_ACK Current tcp Stream interrupts

INCOMING_PKT Current tcp Stream Interrupt

TCP_MESSAGE Current tcp Stream interrupt

FAILURE Failure Recovery n/a Failure Interrupt

RECOVERY Failure Recovery n/a Recovery interrupt

4.3.3.3 States

Now, the state decomposition must be performed that forms the basis of a state transition

diagram (STD) that is represented by a process model in OPNET. The goal here is to define a set

of discrete states that will later be connected with transitions to form an STD. At this point, only

the states need be identified.

The guidelines are those mentioned in the OPNET online documentation.
32

 The following table

lists all the states this process model may have and its description. All these states are “Un-

forced” or red states where the process rests. The “Forced” or the green states are incorporated

for convenience and clarity of execution.

Table 4-4: State Description Table

State Name State Type Description

wait Un-forced Waiting for an interrupt from interfacing
module(s) or from simulation kernel.

Failed Un-forced Waiting for an interrupt from the
simulation kernel to recover the node.

4.3.3.4 Event Response Table

For most process models, it is only possible for a subset of the logical events to occur while the

process is located in a given state. This is generally because the involvement of the process itself

is required in the interactions that result in the event. For example, in this process, a “recovery”

event in the “wait” state is not possible because the device has not failed as yet. The following

table enumerates which events are possible/desirable in which states.

31 This is not the only possible way that this communication can be executed; there might be other ways, although they are not

discussed here. For further details, please refer to the OPNET online documentation (i.e., the section titled “Communication

Mechanisms” under the Modeling Concepts menu).
32 See the subsection titled Process Modeling Methodology in the section titled Process Domain, under the Modeling Concepts

menu.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-19

Table 4-5: Event Feasibility Table

State Name Logical Event Feasibility

Generate traffic Feasible

Receive traffic Feasible

Receive TCP signaling Feasible

Failure Feasible

wait

Recovery Not feasible

Generate traffic Not feasible

Receive traffic Not feasible

Receive TCP signaling Not feasible

Failure Not feasible

failed

Recovery Feasible

In addition to “wait” and “failed,” other forced states will be introduced in this process model to

act as the placeholder for the code, and to handle the se_trafgen’s functionality. These forced

(green) states are:

open_conn: This state performs the function of opening the TCP connection for every IER

to be sent by the se_tcp.

Rcv_pkt: This state handles the reception of packets from the lower layers.

Process_message: This state handles the TCP handshake packets received from the tcp

module.

Init: This state creates lists to store the client and the server connection handles and also

creates segmentation and reassembly buffers.

In addition to these states, there is a precursor state wait_for_tcp that ensures that the TCP

protocol has been initialized before the code in the init state is executed.

Once the feasible events associated with each state for the process model are determined, the

next step is to develop an event response table that describes the process’ possible courses of

action for each feasible state-event pair. The following table lists every feasible state-event pair

in the two left columns. For each such pair, at least one transition is defined.

Table 4-6: Event Response Table

Current
State

Logical
Event

Condition Action
Interim State

(Forced State)
Next
State

Generate
traffic

None Open TCP
connection

open_conn wait wait

Receive
traffic

None Put the packet in
the reassembly
buffer and close
the TCP
connection

rcv_pkt wait

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-20

Current
State

Logical
Event

Condition Action
Interim State

(Forced State)
Next
State

To open a new connection Open a new
server connection

process_messag
e

wait

established Send the packet
and then close
the connection

process_messag
e

wait

close Inform the OE
that the IER is
received
successfully

process_messag
e

wait

Receive
TCP
signaling Informing

the status of
an existing
connection

aborted Inform OE of the
IER failure that
the connection
aborted

process_messag
e

wait

Device
Failure

None Free up the IER
and TCP
connection
related memory.
Set the
availability of the
device as non-
available.

None failed

failed Device
Recovery

None Set the
availability status
of the device
available.

None wait

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-21

The process model based on the previous table should look similar to that in Figure 4-9:

Figure 4-9: se_trafgen Process Model

4.3.4 Implementation

The following sections discuss functions that each state must perform and associated code

snippets. This subsection touches upon the code for all the important functions of this end-

device, but does not include all code that may be written for the end-device model to be

complete.

The code is written for individual states of the process model, the compilation of which produces

the “C” code representation of the process model.

4.3.4.1 Open Connection State Implementation

Figure 4-10: Open Connection State

The execution should come to this state from the “wait” state, on reception of a stream interrupt

from the tcp module. The transition for this state is “INCOMING_PKT,” which is defined in the

header block (of the OPNET Modeler process editor) as—

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-22

In the enter execs of this state, the following functions are performed:

1. Creating a Packet. The information regarding the IER is retrieved from the ICI

associated with the interrupt; after that, a packet with format “data” is created. In this

packet, information related to the IER as well as the current node is set as follows:

2. Registering with TCP API Package.
33

 When an application registers itself with the API

package, it is returned as a handle that contains relevant data to accomplish all

subsequent interaction with TCP. The registration process, by itself, discovers the TCP

layer to which the application is connected and stores the TCP Object ID in the interface

handle. Also registered in the same handle is a pointer to the next available local port on

the TCP layer. This procedure does not facilitate reusing port values but always

increments the next available local port. This is performed by calling the OPNET tcp api

in the following code snippet:

3. Open a TCP connection. In this state, it opens a TCP connection to the node whose IP

address equals the given remote address on given local and remote ports. TCP

connections must be opened in active
34

 mode. “Command” passed as an argument to this

function is used to distinguish between the active and passive modes. Because this is a

client connection, it is opened in an active mode. The NW_TCP_PORT is the default

33 Please refer to the OPNET Modeler online documentation, section on Model Library → Standard → TCP Model User

Guide → Model Interfaces → Application Layer Interfacing for details on the use of these APIs.
34 Please refer to the OPNET Modeler online documentation, section on Model Library → Standard → TCP Model User

Guide → TCP Commands and Indications for details.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-23

local port on which the connection could be opened; the user can define its value. The

connection id returned is then stored in a list with other connection information. This is

performed in the following code snippet using the TCP API:

4.3.4.2 Receive Traffic State Implementation

Figure 4-11: Receive Traffic State

The execution should come to the rcv_pkt state from the wait state, on reception of a stream

interrupt from the tcp module. The transition for this state is INCOMING_PKT, which the header

block defines as—

The rcv_pkt state performs the following functions:

First, it puts the packet received into the reassembly buffer and then tries to remove a complete

packet from this buffer. If this state cannot reassemble a packet completely, it destroys the

packet. The OE then reports the IER as received after it receives a close connection message.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-24

After this, the server connection is closed, as shown in the code snippet below:

4.3.4.3 Process Message State Implementation

Figure 4-12: Process Message State

The execution should come to the process_message state from the wait state, on reception of a

stream interrupt from the tcp module. The transition
35

 for this state is TCP_MESSAGE, defined

in the header block as—

The following functions are performed in this state:

1. A new server connection is opened if the associated ICI indicated a new connection to be

opened. It calls a function se_open_server_tcp_conn defined in the function block.

35 We have defined this transition as one in which the interrupt received is a remote interrupt, and the source of this interrupt is

an IER (by checking that the ici type is “ier_ack”).

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-25

This function opens a TCP connection to the node whose IP address equals the given remote

address on given local and remote ports. TCP connections must be opened in passive mode.

“Command” passed as an argument to this function is used to distinguish between these two

modes. Because this is a server connection, it is opened in a passive mode. The connection id

returned is then stored in a list with other connection information. This is performed in the

following code snippet:

Finally, after the connection is open and the transport connection is established, the application

processes are ready to receive messages from peers. This information must be passed on to TCP,

and the following tcp api accomplishes that operation.

2. This state handles the TCP control messages as well. Based on the type of message, it is

switched (using the C switch/case statements) to the appropriate case.

For the tcp message indicating the successful establishment of the connection, the data is sent

and the connection is closed (see below):

Once the TCP close control message is received, the OE is informed that the IER
36

 is received,

and related memory for the connection is freed up (see below).

36 Please refer to “Appendix G: Modeling ” of the Model Development Guide v3.1 on details on the codes used by the OE to

communicate with SE and vice-versa.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-26

For the connections that are aborted, the OE is informed of the IER failure, and related memory

is freed up.

4.3.4.4 IER Handling State Implementation

Figure 4-13: IER Handling State

The execution should come to the handle_ier state from the wait state upon reception of a remote

interrupt from the OE. The transition for this state is OE_INT, defined in the header block as:

The following functions are performed in this state:

1. IER framework API is used to obtain the traffic type:

2. IER framework API is used to track this application layer message:

Additionally, in the Enter Execs of the rcv_pkt state, the IER framework API is used to obtain

the IER and IER instance keys from the application level packet and informing IER manager and

COTS ADT support about reception of this IER. This is done by adding the following code:

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-27

4.3.4.5 Failure State Implementation

Figure 4-14: Failure State

The execution should come to the failed state from the wait state upon reception of a failure

interrupt from the kernel. The transition for this state is FAILURE, defined in the header block

as—

In this state, the first thing that is done is to set the availability status attribute as disabled, as

shown below:

The next important action in this state is to fail the IERs for which the connection is open.

Because the supporting transport protocol is TCP, the IER is said to be “not received” until a

TCP close acknowledgement is received, meaning the IER data may have reached the destination

but may still be marked as failed. The following code fails the IERs with open connections and

frees up any related memory:

The execution goes back to the “wait” state when the recovery interrupt is received in this state.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-28

4.4 WIRED END DEVICE EXAMPLE 2

4.4.1 Overview

This subsection explains the construction of an end-system device using an example. The

example end-system device is a computer that generates data IERs over TCP/IP with Ethernet as

the MAC technology. The computer is built from an existing OPNET Standard (COTS) device—

an ethernet_wkstn_adv model.

4.4.2 Steps

Because this is an end-system device, it needs a module that communicates with the OE to get

the IER information—the SE module. The SE module generates data IERs upon receiving

remote interrupts from the OE in its OPFAC. It generates the IERs and forwards them to the

network protocol stack, where they are sent out on to the network through the Ethernet

interfaces. Because TCP is an acknowledgement-based scheme, the end-system device sending

the IER marks it as received when the connection close request, for the connection over which

IER was sent, is received. The SE module also handles the failure/recovery of the computer.

Because it transmits only data IERs and uses TCP/IP as the underlying protocol, it needs the

TCP/IP protocol stack. It also uses Ethernet as the MAC technology.

Rather than assembling all the modules needed for communication in the OPNET simulation

environment, begin by modifying an OPNET Standard (COTS) model —an ethernet_wkstn_adv

model. Not all components need to be built by modifying an existing model; components can be

built from scratch as well. The ethernet_wkstn_adv node model is shown below:

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-29

Figure 4-15: Ethernet_wkstn_adv—Node Model

Step 1. From the ethernet_wkstn_adv node, the CPU, application, RSVP, UDP, RIP, Dynamic

Host Configuration Protocol (DHCP) and TPAL modules must be removed:

In a node editor window, open the ethernet_wkstn_adv node model.

Select the mentioned modules and hit CTRL-X.

Note that the packet streams connected to and from the modules are deleted automatically.

Step 2. Add the SE module on top of the TCP module and connect them to the incoming and

outgoing packet streams:

• Left-click the “create processor” toolbar button.

• Left-click the area above the TCP module. This creates a processor module on top of the

TCP module.

• Right-click the created module and name the module se_tcp by modifying the module

attributes.

• Left-click the “create packet stream” toolbar button.

• Create an incoming packet stream by first left-clicking the tcp module and then the se_tcp

module.

• Create an outgoing packet stream by first left-clicking the se_tcp module and then the tcp

module.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-30

The node model for the computer should look like Figure 4-16.

Figure 4-16: Computer—Node Model

Step 3. The “Model Attributes” for this node must be set as follows:

• Under the “Interfaces” menu, choose the “Model Attributes” option.

• Set the following attributes and their types in the “Model Attributes” table. The JCSS

program suggests that you use the already existing public
37

 definitions of these attributes,

which we have named the same as the attribute names themselves.

Table 4-7: End-System—Model Attributes

Attribute Name Attribute Type

classification String

equipment_type Enumerated

availability_status Toggle

Step 4. The SE module now should house the process model created in the following subsection:

• Right-click on the se_tcp module and change the “process model” attribute to be the

name of the process model, se_trafgen, created in the next subsection.

37 Please refer to the OPNET Product documentation, Modeler Documentation → OPNET Editors Reference → Process Editor

section, for further details.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-31

4.4.3 Process Model: SE

Figure 4-17 contains a workflow diagram of a simple SE process model.

Figure 4-17: Sample Workflow Diagram for SE Process Model

During initialization, the process reads in attribute values and creates any necessary structures, as

well as obtaining pointers to the statistic files.

Referring to Figure 4-17, above, when the computer receives an interrupt from the OE to

generate an IER, it transitions to the send state, sends the IER to the protocol stack, and goes

back to the idle state. When it receives a failure interrupt, it transitions to the fail state and stays

there until it receives a recovery interrupt, at which point it transitions to the recover state and

performs the steps needed for recovery. Then it transitions back to the idle state.

The se_tcp module uses the following APIs to interface with the TCP module:

tcp_connection_open (). To open a TCP connection with the destination

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-32

tcp_receive_command_send () Used by the receiving SE module to indicate to the

TCP module to forward the IERs to itself

tcp_data_send (). To send IERs.

Figure 4-18: Process Model for the SE Module in the Computer

4.4.4 Statistics

The se_tcp process model is responsible for informing the OE of the failed IERs. There could be

several reasons for failure in data communication, such as the TCP socket failure or congestion

in networks. The se_tcp process model informs the OE (using the codes describes in Appendix

F). The IER is “received” only when the source of the traffic (IER) receives a tcp

acknowledgement (connection close indication) and code NWC_INFORM_SRC_OE_RCVD is

used (in the remote interrupt) to inform the OE at the source OPFAC to collect the IER Received

statistics. In the following sample code, the process model records the statistics due to TCP

socket open failure (for a more detailed example, please refer se_trafgen.pr.c / se_trafgen.pr.m

files).

Figure 4-19: Sample Code 1—Inform OE of the IER Failure, Which Will Then Record the Statistics

Interfacing with the statistics, such as writing success and failure statistics, is normally

accomplished through the APIs. Refer to the OPNET Modeler online documentation for detailed

examples of how to accomplish this.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-33

4.5 LAYER 1 DEVICE EXAMPLE: BULK ENCRYPTOR

4.5.1 Overview

This subsection explains the construction of Layer 1 networking equipment using an example.

The objective is to construct an encryptor device. The example networking equipment is an

encryptor with two ports. It accepts packets from a classified network, encrypts the packet, and

sends it over an unclassified network. When it accepts packets from the unclassified network, it

decrypts the packet and forwards it on to the classified network. It encrypts only the payload of

the packet. The header is left intact. The encryptor model is constructed from scratch.

4.5.2 Steps

Step 1. Two transceiver pairs are created:

In a new node editor window, using “create point-to-point receiver,” place two point-to-point

receiver and transmitter pairs and “create point-to-point transmitter” toolbar buttons.

Once the transceiver modules are in place, create logical connections between them by using

the “create logical tx/rx association” toolbar button.

Step 2. A processor to house the encryptor process model is created and connected to the

transceiver pair:

• Left-click the “create processor” toolbar button.

• Left-click the area above the transceiver modules.

• Right-click the created module and name the module “encryptor” by modifying the

module attributes.

• Left-click the “create packet stream” toolbar button.

• Create incoming packet streams by first left-clicking on the receiver modules and then on

the encryptor module.

• Create outgoing packet streams by first left-clicking on the encryptor module and then on

the transmitter modules.

The resulting encryptor device looks like Figure 4-20.

Figure 4-20: Encryptor—Node Model

4.5.3 Process Model

Step 1. A workflow diagram of a simple encryptor model is designed.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-34

Figure 4-21: Data Flow for an Encryptor

Step 2. The encryptor performs its initialization functions in the init state and transitions to the

idle state, where it waits for a packet. When the packet arrives, it checks the direction from

which the packet is coming. If the packet is from a classified network and going to an

unclassified network, it encrypts the packet and sends it on the appropriate output interface. It

decrypts the packet for a packet going in the opposite direction.

Figure 4-22: Process Model for Encryptor

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-35

Figure 4-23 shows a sample code block from the encrypt state:

Figure 4-23: Sample Code 2—Encrypting a Packet

The model developer must write the function get_encrypted_packet () that takes in a

packet and encrypts it. All other functions are OPNET kernel procedures. It is important to note

that the code listed above uses the expression (1 – stream), which only works if all stream

numbers are zero and one, and both the incoming and outgoing stream connected to a particular

rx/tx pair are given the same stream number (i.e., if pr_0 is connected by incoming stream zero,

then pt_0 must be connected by outgoing stream zero). Similarly, pr_1 and pt_1 should both use

stream number one. An example cryptographic device, which performs similar functionality, is

the KG-194 node model; the process model is crypto.pr.m (these cryptographic device models

are available with JCSS version 3.1).

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-36

4.6 LAYER 2 DEVICE EXAMPLE: MULTI-SERVICE SWITCH

4.6.1 Overview

The example considered here is a multi-service switch that has circuit-switched and ATM

interfaces. The objective is to explain the construction of Layer 2 networking equipment using an

example. The example networking equipment is a multi-service switch that is used for

interfacing a circuit-switched voice network with an ATM data network. This is a switch with

one ATM and two circuit-switched interfaces. It needs two pairs of circuit-switched transceivers

and one pair of ATM transceiver. It also has the ATM protocol stack. In addition to these

modules, a module for switching is needed. This device needs one ATM port and the ATM

protocol stack. Therefore, this node is built by modifying an OPNET Standard (COTS) model—

atm_uni_dest_adv. The atm_uni_dest_adv node model is shown in Figure 4-24:

Figure 4-24: Atm_uni_dest_adv Switch—Node Model

4.6.2 Steps

Step 1. From the atm_uni_dest_adv node model, the traf_sink module is removed:

• In the node editor window, open the atm_uni_dest_adv model.

• Select the module mentioned above and hit Ctrl-X to remove them from the workspace.

Step 2. This device has two circuit-switched ports. Therefore, two transmitters and receivers are

added:

• Left-click the create point-to-point receiver tool button.

• Left-click in the node editor workspace to create two instances of the point-to-point

receiver.

• In a similar way, create two transmitter objects.

• Associate the transceiver pairs with a transmitter/receiver association object.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-37

Step 3. Two processor modules are created, and the circuit-switched ports are connected to one

of them:

• Place a processor module in the workspace and name it voice_dispatch.

• Connect the transmitters and receivers to the voice_dispatch module.

• Create another processor and call it voatm.

Step 4: Connect the circuit-switched ports to the ATM stack through the voatm and

voice_dispatch modules using packet streams.

The completed node model looks like Figure 4-25.

Figure 4-25: Multi-Service Switch—Node Model

Step 6. Create process models for the voatm and voice_dispatch modules and set the process

model attributes for these two modules appropriately.

Step 7. Add the required JCSS attributes. Refer to Step 3 under Subsection 4.4.2.

4.6.3 Process Models: Voice Dispatch and Voice Over ATM

voice_dispatch: Takes the ckswpkt packet and passes it to the appropriate convergent

module. A multi-service switch like this can potentially have additional types of

interfaces like IP and Frame Relay. There are different convergent modules depending on

the protocol stack desired. In the example, there is only one convergent module, the

voatm module. So, the voice_dispatch module forwards call-setup packets to the voatm

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-38

module.

Similarly, when the voice_dispatch module receives packets from the voatm module, it

must determine which one of the circuit-switched interfaces to send the packet on.

Voatm: When the voice_dispatch module forwards the packet to the voatm module, the

voatm module generates ATM cells at a rate that depends on the call generation rate and

forwards the packets to the ATM stack. When the voatm module gets data packets from

the ATM stack destined to one of the circuit-switched interfaces, it destroys the data

packets and sends the appropriate control packets (call-setup, ack) to the voice_dispatch

module.

The voice module is responsible for informing ATM of the circuit setup. The voice call

setup message must be translated to the appropriate ATM call setup message for circuit

reservation. Likewise, on the other end, the ATM device must inform the voatm module

of the call setup message and forward it on. This means on the “source” side, there needs

to be flooding on the other circuit switch interface.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-39

4.7 LAYER 2 DEVICE EXAMPLE: MULTIPLEXER DEVICE USING CIRCUIT API

4.7.1 Overview

The example considered here is a circuit based multiplexer device. The objectives of this

example include adding self descpritions and data description files to a custom multiplexer, so

that circuits for the device can be created using the Generic Circuit Wizard.

The example networking equipment is a custom node model (found in the OPNETWORK 2008

Session 1952 Lab 2), but it is similar in nature to the CTP_1012 node model in the JCSS device

suite. The node model is shown in the following figure:

Figure 4-26: Custom Multiplexer Node Model

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-40

• The node contains 10 ports (transmitter- receiver pairs) that are named cir_tx_<n> and

cir_rx_<n> to denote circuit side ports. It is recommended that the user utilize this type

of naming scheme, so that users can easily determine the functionality of the port by

looking at the model. These ports take in a serial bit stream which will eventually be

aggregated together with other data streams.

• The node also has one aggregate port (named aggregate_pt_0 and aggregate_pr_0) which

sends out multiplexed (aggregate) frames.

• The mux module is responsible for performing the multiplexing of serial bit streams

coming from the circuit side ports and demultiplexing the aggregate frames coming from

the aggregate port.

• The input of each circuit side port is fed in to the circuit interface module (one module

per circuit side port). This module is an optional plug and play module which is

responsible for optional features like handling circuit switched voice, generating explicit

packets for voice, collecting circuit level statistics and generating full circuit load. The

recommended way of naming this module is cir_intf_<n>.

4.7.2 Attributes and Process Model Code

Step 1. Choose Interfaces > Node Interfaces, observe that this node model has an attribute

named Circuit Configuration. This is a required attribute for every circuit based device and is

used by the Generic Circuit Wizard. Click on (…) to open up the (Circuit Configuration) Table

(not all the rows are shown).

Figure 4-27: Circuit Configuration Table

• This compound attribute has one row for each circuit side port.

• Each row should have two required attributes named as Source Port (attribute data type is

string) and Circuit Speed (attribute data type is double). It can also have advanced

attributes (optional) for your model, but it is not needed for this example.

• The Source Port attribute should be set to the transmitter name of the circuit side port.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-41

• The Circuit Speed attribute is set to the default value Auto-Sense (i.e., it uses the data rate

of connected link).

Step 2. Observe in the Node Interface dialog box that there is a Port Configuration (P<n>)

attribute for each circuit side port. Click on (…) to open up the (Port Configuration (P<n>))

Table.

Figure 4-28: Port Configuration Table

• This table has attributes to turn ON/OFF the optional features supported by circuit

interface module.

Step 3. In the Exit Execs of INIT state, observe the use of the DES circuit API:

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-42

Above usage illustrates that any custom model which uses an nw_circuit path object to define

circuits can take advantage of the functions which are part of circuit API in DES.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-43

4.8 LAYER 3 DEVICE EXAMPLE: CUSTOM ROUTER

4.8.1 Overview

This subsection explains the construction of Layer 3 networking equipment using an example.

The example considered is an IP router with one serial port, one Ethernet port, and a custom

routing protocol (called MRP,for Military Routing Protocol) running over TCP. The router is

built from an existing OPNET Standard (COTS) device—a CS_1005_1s_e_sl_adv router model.

4.8.2 Steps

This router has a custom routing protocol, MRP, running on top of TCP. The router has two

ports—one Ethernet port and one SLIP port. The router is constructed from an existing OPNET

Standard (COTS) model—a CS_1005_1s_e_sl_adv router model. Rather than assembling all the

modules needed for communication in the OPNET simulation environment, begin by modifying

an OPNET Standard (COTS) model— a CS_1005_1s_e_sl_adv router model. The

CS_1005_1s_e_sl_adv node model is shown below, in Figure 4-29:

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-44

Figure 4-29: CS_1005_1s_e_sl_adv Router—Node Model

Step 1. The custom routing protocol module is added on top of the TCP module and is connected

to it with an incoming and outgoing packet stream:

• Left-click the create processor toolbar button.

• Left-click the area above the tcp module. This creates a processor module on top of the

tcp module.

• Right-click the created module and name the module “mrp” by modifying the module

attributes.

• Left-click the create packet stream toolbar button.

• Create an incoming packet stream by first left-clicking the tcp module and then the mrp

module.

• Create an outgoing packet stream by first left-clicking the mrp module and then the tcp

module.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-45

After the changes have been made, the node model for the router looks like Figure 4-30.

Figure 4-30: Router with Custom Routing Protocol—Node Model

Step 2. Add the required JCSS attributes. Refer to Step 3 under Subsection 4.4.2.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-46

4.8.3 Process Model: Custom Routing Protocol

The process model that implements the custom routing protocol looks like Figure 4-31.

Figure 4-31: Process Model for a Custom Routing Protocol

In the init state, the custom routing protocol registers itself as an IP higher-layer protocol using a

call to the function Ip_Higher_Layer_Protocol_Register(). It must also register

itself in the IP common routing table with a call to the function

Ip_Cmn_Rte_Table_Custom_Rte_Protocol_Register().

When the IP process mode has been initialized, the custom routing protocol module receives a

remote interrupt with code IPC_EXT_RTE_REMOTE_INTRPT_CODE. On receiving this

remote interrupt, it transitions to the init_rte_table state, where it can start accessing the routing

table via the process registry. Then it transitions to the wait state.

When the custom routing protocol receives route update messages, it makes or changes entries in

the common routing table using calls to the functions:

Inet_Cmn_Rte_Table_Entry_Add()

Inet_Cmn_Rte_Table_Entry_Delete()

Inet_Cmn_Rte_Table_Entry_Update()

These functions are defined in the external file OPNET\<rel_dir>\models\std\

ip\ip_cmn_rte_table.ex.c and the prototypes for these functions are in OPNET\<rel_dir>\

models\std\include\ip_cmn_rte_table.h, where <rel_dir> is the release directory (e.g., 15.0.A).

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-47

4.9 CIRCUIT-SWITCHED DEVICE EXAMPLE: END SYSTEM

4.9.1 Overview

This subsection explains the construction of a circuit-switched device using an example. The

example used here is a phone (a circuit-switched end-system device) that generates calls based

on its interaction with the OE. This example shows how to build the device from scratch.

4.9.2 Steps

The phone has three modules, as shown in Figure 4-32:

1. An SE module that generates calls in response to interrupts from the OE

2. A transmitter that supports only packets of type cktswpkt

3. A receiver that supports only packets of type cktswpkt.

Figure 4-32: Phone—Node Model

The transmitter and the receiver are connected to the SE module by packet streams, as shown in

Figure 4-32. The transmitter and receiver are logically associated with each other.

Note that in order to generate calls initiated by the standard voice application in addition to voice

IERs, the device would require additional application, TPAL, and CPU modules.

Step 1. A transceiver pair is created:

• In a new node editor window, a point-to-point receiver and transmitter pair is created by

using the “create point-to-point receiver” and “create point-to-point transmitter” options.

• Once the transceiver modules are in place, logical connections between them are created

using the “create logical tx/rx association” option.

Step 2. A processor to house the se process model is created and connected to the transceiver

pair:

• Left-click the “create processor” toolbar button.

• Left-click the area above the transceiver modules.

• Right-click the created module and name the module “se” by modifying the module

attributes.

• Left-click the “create packet stream” toolbar button.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-48

• Create an incoming packet stream by first left-clicking the receiver module and then on

the SE module.

• Create an outgoing packet stream by first left-clicking the SE module and then the

transmitter module.

Step 3. The “Model Attributes” for this node must be set as follows:

• Under the “Interfaces” menu, choose the “Model Attributes” option.

• Set the attributes and their types shown in Table 4-8 in the “Model Attributes” table.

Table 4-8. Circuit-Switched End-System Device—Model Attributes

Attribute Name Attribute Type

equipment_type Enumerated

availability_status Toggle

Call Bandwidth Double

Max Calls Allowed Integer

Step 4. The SE module to house the process model is created in the following subsection:

• Right-click the SE module and change the “process model” attribute to be the name of

the process model created in the following subsection.

4.9.3 Process Model: se

The se module is responsible for interacting with the OE to generate calls.

Step 1. A workflow diagram of a simple SE process model is designed.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-49

Figure 4-33: Data Flow for a Phone

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-50

Step 2. The process model for the se module might look like that shown in Figure 4-34.

Figure 4-34: Process Model for the SE Module

The initialization steps are performed in the init_1 state. When the phone receives an interrupt

from the OE requesting a call setup, the process model transitions to the call_setup state, gets the

necessary information from the ier_info ICI, creates a call-setup packet, and sends it to the

transmitter module.

When the phone receives a packet, the process model transitions to the packet_arrival state and

processes the packet. This packet could be an ACK packet indicating that the call was

successfully set up, a Negative Acknowledgement (NACK) indicating that the call setup failed,

or a request for a call setup from a remote phone. The packet_arrival state takes the necessary

action, depending on the type of packet.

When the phone receives a failure interrupt, it transitions to the failure state and takes the

necessary steps to handle the interrupt. It recovers when it receives a recovery interrupt.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-51

4.10 WIRELESS DEVICE EXAMPLE

4.10.1 Overview

This subsection explains the construction of a radio device using an example. This end-system

device uses the OPNET standard wireless LAN MAC model to communicate voice or non-IP

data IERs. Start with the OPNET Standard (COTS) model wlan_station_adv node model. The

wlan_station_adv is a simple radio device that sends out a packet to the destination specified in

the wlan_mac_intf module using IEEE 802.11 interface. By adding an SE module to interface to

the OE and setting the destination address to be that of the gateway radio device, we have a

simple radio end-system device. The wlan_station_adv node model is shown below in Figure

4-35.

Figure 4-35: wlan_station_adv—Node Model

4.10.2 Steps

Step 1. The source and sink modules are replaced with an se module:

• In a node editor window, open the wlan_station_adv node model.

• Select the mentioned modules and press CTRL-X.

Note that the packet streams connected to and from the modules is deleted automatically.

Step 2. The SE module is added on top of the wlan_mac_intf module and is connected to it with

an incoming and outgoing packet stream:

• Left-click the create processor toolbar button.

• Left-click the area above the wlan_mac_intf module.

• Right-click the created module and name the module se by modifying the module

attributes.

• Left-click the create packet stream toolbar button.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-52

• Create an incoming packet stream by first left-clicking the wlan_mac_intf module and

then the se module.

• Create an outgoing packet stream by first left-clicking the se module and then the

wlan_mac_intf module.

Step 3. Because this is an end-system device, it has classification, equipment_type, and

availability_status as model attributes. Set the model attributes for this node as follows:

• Under the “Interfaces” menu, choose the “Model Attributes” option.

Set the attributes and their types shown in Table 4-9 in the Model Attributes table.

Table 4-9. Radio End-System Device—Model Attributes

Attribute Name Attribute Type

classification String

equipment_type Enumerated

availability_status Toggle

The node model looks like Figure 4-36.

Figure 4-36: Radio SE model—Node Model

Step 4. The se module now houses the process model created in the following subsection:

Right-click the se module and change the process model attribute to have the name of the

process model.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-53

4.10.3 SE Process Model

The process model for this device is similar to the for constructing a computer model process

model except that packets are sent to the lower layer directly without using the TCP interface.

Refer to the Process Model section of the example wired end device for more information.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-54

4.11 WIRELESS DEVICE EXAMPLE 2

4.11.1 Problem Statement

The following discussion provides implementation-level guidelines for developing a radio end-

device JCSS model. Relevant aspects, such as OE-SE interaction, are presented in detail;

however, other aspects of the radio itself—such as the medium access control—are left out

because the details are specific to the type of radio being modeled.

The discussion aims to provide details for a radio end-device that is capable of generating both

voice and data IERs.

4.11.2 High-Level Design

4.11.2.1 Node Model Development

Figure 4-37. Radio End Device Node Model

The node model in Figure 4-37 above is a JCSS prc_radio node model and it shows a device with

two interfaces—a wired interface and a radio interface. The node is also capable of generating

JCSS IER traffic from the se module.

The se module is responsible for generating the IER and reporting the IER receptions through

interaction with the OE in the OPFAC.

The fwd module is responsible for performing appropriate forwarding decisions—either to and

from the se module or to and from the mac module.

The mac module is responsible for the medium access control to the wireless interface. The

functions of this module depend on the technology a particular device uses. Hence, the

implementation details for this module are not discussed.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-55

4.11.3 fwd module: Detailed Design

4.11.3.1 Module Context and Functionality

This module is responsible for handling the packets that arrive either from the se module (which

generates the traffic) or from the wired interface of this device. The se module is responsible for

generating the traffic. The fwd module is an interfacing module between the mac and the

se/wired interface modules. Based on the packets received from either of these modules, it

determines the destination module and forwards it on. It is necessary to provide any required

encapsulation or decapsulation so that the packet format of the packet is the one supported at the

destined module.

4.11.3.2 Events

There are three different events that can happen at this module. They are:

Receive packet from SE

Receive packet from pr_0 (wired interface)

Receive packet from the MAC (radio mac).

4.11.3.3 States

Based on the packet this module receives, it forwards it to the relevant destination module and

waits for the arrival of the next packet. Thus, the only real state this module can be in is the Wait

state, although there can be a few transitory states this module can go to, where it performs the

forwarding functions.

4.11.3.4 Event Response Table

The detailed design approach followed in this subsection is very similar to that followed in the

wired end device code example (see Subsection 4.3).

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-56

Table 4-10: Event Response Table for “fwd” Process

Current State Logical Event Condition Action Next State

Simulation start Receives
begin_sim
interrupt

Perform
initialization
steps, initialize
state variables.

Wait Init

Simulation Does
not initialize

Radio is in
Satellite Mode

No action Halt

Packet arrived
from se or
wired_mac

Forward packet
to the mac
module

38

Wait

Wait

Packet arrival
Packet arrived
from mac

If packet is
designated to se,
send the packet
to se.

Otherwise,
forward the
packet to the
wired_mac
interface.

Wait

Halt Default All conditions No action Halt

Figure 4-38: fwd Module Process Model

38 Note that this is an example—in this node, packets from the wired interface are just forwarded to the wireless interface.

Equivalently, we could consider forwarding the packets to the “SE” module,or some split in between based on other logic

considerations.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-57

4.11.3.5 Implementation Details

Init State Implementation:

In this state, the radio availability is set to enable if it is not a part of any broadcast network, and

other state variables are also initialized, including the power, fec-comsec, and the module ids like

the mac module id and the se module id.

MAC_PK_RCV State Implementation:

The execution reaches this state when the fwd module receives a packet from the mac layer.

In this state, we are receiving the packet from the mac layer. Depending on the destination of the

packet, the packet is sent to the transmitter or the se.

INC_SE_PK_RCV State Implementation:

The execution reaches this state if the fwd module receives a packet from either the se module or

the INC device connected to the radio.

In this state, packets are received from either the pr_0 or the se module. These packets are sent

directly to the mac if the radio is available.

4.11.4 mac Module

No specific MAC is detailed here because the medium access control for the broadcast medium

is specific to the type of radio being modeled. Typical schemes might be TDMA or Frequency

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-58

Division Multiple Access (FDMA), for example, to provide access to the shared broadcast

medium. The JCSS model suite has radio models with specific MAC implementations; please

refer to the PRC and EPLRS models as example radios.

The MAC module should essentially guarantee that the packets arriving from the “fwd” module

(in the example node above) are sent over the wireless broadcast medium using an access control

mechanism.

4.11.5 se Module

4.11.5.1 Module Context and Functionality

The se module is responsible for generating traffic based on the information received from OE.

This module also acts as the traffic destination (or sink). All the traffic destined for a particular

device reaches the se module, which writes the IER statistics.

The two modules with which se interfaces are oe and the forwarding module (shown in Figure

4-39.)

Figure 4-39: SE Module Interfaces

4.11.5.2 Events

Two events can occur at this module:

1. Packet arrival from the forwarding module. This packet signifies the reception of the IER

for which this device is destined.

2. Reception of information from the OE to start a new IER.

4.11.5.3 States

The only true state this module can be in is the Wait state, in which the module’s process model

executes after processing either of the above-mentioned events. However, there can be two

transitory states where the processes execute to perform the necessary functions based on the

events.

4.11.5.4 Event Response Table

Table 4-11: Event Response Table for the Radio SE Module

Current State Logical Event Condition Action Next State

Operational
Element (oe)

System
Element
(se)

Forwarding
Module

……

End Device Model OE Model

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-59

Init Simulation start None Perform initialization. Wait

Remote interrupt None Generate IER, send IER
out to “fwd” module.

Wait Wait

Stream interrupt None Process incoming packet.
Inform OE, which records
the IER statistics.

Wait

4.11.5.5 Radio SE Process Model

Figure 4-40: Radio SE Process Model

4.11.5.6 Implementation Details

Init State Implementation:

In this state, some of the state variables, including the node id, process id, and oe id for the

OPFAC are set.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-60

Gen_Call State Implementation:

The control reaches this state if the se receives a remote interrupt from the OE:

First retrieve the IER parameters from the ICI associated with the remote interrupt. Make sure

that the interrupt code used by the OE is “TRAFF_INT”.

To generate the IER:

• Create the packet—set the fields on the packet, such as destination radio ID, flag to indicate

that the IER was generated by a radio device, and so forth.

• Set the radio as “being busy” for the duration of the call. For the radio, “being busy” can be

set by marking the radio as “not available.”
39

• Send the packet out to the “fwd” module.

39 The “being busy” flag may be reset after the call is complete to signal to the OE that the radio is available for future IER

generation. The reset may be performed, for example, by the “mac” module—after the call is complete. The attribute to be

reset for availability is a node-level attribute—”availability_status.”

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-61

Note here that if the IER is to be “multicast” to more than one destination, then the destination

node should check whether it is one of the consumers. This destination list should be checked

when processing the IER at the reception end.

Proc_Pk State Implementation:

The execution reaches this state when the radio end device receives an IER (stream interrupt).

The following factors are to be considered:

1. Determine whether this radio is an intended recipient of the IER.

2. Process the received IER, and use the IER API to inform to the OE in the OPFAC

about the received IER.

4.11.5.7 ICI and Packet Formats

A new packet format for the IER is to be generated by the radio. This packet format has packet

format fields for the IER information, a flag to indicate that the packet is from a radio SE, and so

forth. For example, the PRC radio creates a packet of format “voice_packet.”

4.11.6 Addressing and Other Issues

For radio devices that have IP devices attached to them (e.g., the wired interface in the radio

above may have an IP device such as a router attached to it), autoaddressing modifications are

necessary. Please refer to the discussion on autoaddressing changes in Appendix W for further

details.

4.11.7 Optimization and Efficiency Considerations

Some high-level efficiency considerations include—

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-62

For the radio model, dynamic receiver groups are an implementation option to modify the list

of potential receivers during the course of a simulation.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-63

4.12 SATELLITE TERMINAL GENERIC EXAMPLE

4.12.1 Node Model Contents

A generic satellite terminal, as it is termed in the context of JCSS, has only a direct mapping of a

wired input port of a particular index to an uplink and downlink channel pair of the same index.

It does not need to contain any process models that process packets received.

It must have a module to house the antenna aiming process. This plays an important role in

pointing a directionalized antenna at the terminal’s home satellite, and it plays a role in

simulation efficiency. This module should house the process sat_term_antenna_aim.

It must have its radio transmitter receiver pair named “sat_tx/rx_0”, and it must have its wired

input ports named as “uplink_pt/pr_<n>“ where the <n> corresponds to the wired input port

index and the associated uplink and downlink channel pair index.

Figure 4-41: Generic Satellite Terminal

4.12.2 Core Self-Description Attributes

Nodal Mode should have the value “Generic.”

Supported Bands should have the value “Ku,X,C,Ka.”

4.12.3 Additional Attributes

Home Satellite (string): This attribute contains the dotted hierarchical name of the home

satellite node in the scenario for this satellite terminal. It should have the initial value

“Unspecified,” and active attributes should prevent direct user modification.

Channel <n> Function (integer): This helps the Wired Link Deployment Wizard

determine what types of links to consider during link deployment. For the Nodal Mode

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-64

attribute, it should always have the symbol map value “Non-TSSP.” The <n> of the

attribute name corresponds to a wired port index. A separate instance of this attribute

must exist for each wired input port.

Port <n> Mapping (compound): This node model must have N instances of this attribute,

where each instance corresponds to a single wired input port. The peer satellite terminal

on the other end of the link has values that mirror those on the local device for this

attribute.

Input Port (integer): Corresponds to a wired input port index on this satellite terminal

device instance; it should have only one possible value that equals the <n> of the

name of its parent compound attribute.

Remote Satellite Terminal (string): Identifies the peer satellite terminal to which this

terminal will connect via the channel index by which it connects.

Remote Input Port (integer): Corresponds to a wired input port index on the peer

satellite terminal. As of version 2006-2, a remote generic terminal can have up to

eight wired input ports, so this attribute must support values “0–7”.

Downlink <n> Bandwidth (double, kHz),

Downlink <n> Data Rate (double, bps),

Downlink <n> Frequency (double, MHz),

Uplink <n> Bandwidth (double, kHz),

Uplink <n> Data Rate (double, bps),

Uplink <n> Frequency (double, MHz),

Uplink <n> Power (double, W)

Together, these attributes define the properties of channel <n>. The node model

should include an instance of each of these attributes for every wired input port

channel. The user should not have the ability to directly modify them in the Scenario

Builder editor. Only the Satellite Link Deployment Wizard should assign these

attribute values. Active attribute definitions should prevent the user from modifying

them directly.

Modulation Downlink (string),

Modulation Uplink (string)

These attributes define the modulation used for all channels of this satellite terminal

in the uplink and downlink directions. The user should not have the ability to directly

modify them in the Scenario Builder editor. Instead, only the Satellite Link

Deployment Wizard should assign these attributes values. Active attribute definitions

should prevent the user from modifying them directly.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-65

4.12.4 Antenna Aim Process

Figure 4-42: Antenna Aim Process

This process serves two purposes. It repoints the satellite terminal’s antenna every time the

satellite moves. It also sets up simulation efficiency for satellite terminals that do not have any

process models besides this one. When running in SATCOM efficiency mode, a simulation-level

attribute defined in the satellite_switch process model, each satellite has the responsibility of

establishing the receiver group of its own channels and those of its home satellite. TSSP satellite

terminals, for example, do this in the tssp process model, but generic satellite terminals do that in

the sat_term_antenna_aim process model.

4.12.5 Description of Antenna Aim Process

Ant Aim Enter Executives code executes when the kernel notifies the process of movement on

the part of the home satellite device of the satellite terminal via the OPNET kernel procedure
op_ima_obj_pos_notification_register ().

Init Enter Executives code executes at simulation startup if the simulation runs with the

SATCOM Efficiency Mode set to “Enabled.” It configures its uplink channels’ rxgroups and its

home satellite’s downlink transponders channels’ rxgroups.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-66

4.13 SATELLITE TERMINAL WITH TSSP EXAMPLE

4.13.1 Overview

TSSP serves as a multiplexing scheme used in Super High Frequency (SHF) satellite systems. It

performs multiplexing and de-multiplexing at the satellite link endpoints on the terminals. TSSP

employs the concept of a nodal terminal versus a non-nodal terminal. A non-nodal terminal

simply has one uplink channel for its multiplexed traffic for transmission and a single downlink

channel for receiving multiplexed traffic that it decodes and forwards to its wired input ports. A

nodal terminal has one uplink signal that it transmits with all of its multiplexed traffic; however,

it can support multiple downlink channels where each downlink channel can carry a different

multiplexed signal. For more information regarding TSSP and nodal versus non-nodal, consult

the Chairman of the Joint Chiefs of Staff Manual (CJCSM) 6231 and Military Standard (MIL-

STD)-188-168 documentation.

4.13.2 Node Model Contents

A non-nodal TSSP satellite terminal has two wired input ports on the landline side, but the model

can accommodate up to eight for those who would like to model it in that manner. Each wired

transmitter/receiver pair must have the naming format “input_pt/pr_<n>” where <n> represents

the port index. It has exactly one radio interface named “sat_tx/rx_0” that has a single uplink and

a single downlink channel. The uplink channel carries the outgoing multiplexed signal, while the

downlink channel receives the incoming multiplexed signal. All the interfaces connect to the

central processing unit, the module named “tssp.” This module performs the multiplexing of the

outgoing bitstream and the demultiplexing of the incoming bitstream. Lastly, it has a module

named “antenna_aim” that aims the device’s directional antenna at the home satellite.

A nodal TSSP satellite has the same properties as its non-nodal counterpart with two exceptions.

It must have exactly eight inputs, no more and no less. It also can support up to four incoming

bitstreams to demultiplex, which means it has four downlink channels rather than just one.

To develop second- and third-generation TSSP models, simply increase the number of wired

input ports to 12, increase the nodal terminal’s number of downlink de-multiplexing channels,

and make the appropriate data rate values supported on the channel attributes. The subsections

below discuss attributes. Their values have a great deal of impact on how the model behaves.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-67

Figure 4-43: TSSP Satellite Terminal

4.13.3 Core Self-Description Attributes

Nodal mode should have the following values under the following conditions:

“Non-Nodal TSSP” for first-generation non-nodal terminals

“Nodal TSSP” for first-generation nodal terminals

“Non-Nodal ETSSP” for second-generation (enhanced) terminals

“Nodal ETSSP” for second-generation (enhanced) terminals

“Non-Nodal ETSSP G3” for third-generation non-nodal terminals

“Nodal ETSSP G3” for third-generation nodal terminals.

Supported bands should have the value “Ku,X,C,Ka”.

4.13.4 Additional Attributes

The TSSP module contains several attributes, but how you set the values of some affects which

others the model reads during simulation.

Nodal Mode: This attribute plays a pivotal role in how the process reads other attributes.

This attribute should have the same value as specified in the Nodal Mode Core Self.

Description attribute: The node should always have this attribute promoted, set, and

hidden. It should have these values under the following circumstances.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-68

“Non-Nodal TSSP” for first-generation non-nodal terminals

“Nodal TSSP” for first-generation nodal terminals

“Non-Nodal ETSSP” for second-generation (enhanced) terminals

“Nodal ETSSP” for second-generation (enhanced) terminals

“Non-Nodal ETSSP G3” for third-generation non-nodal terminals

“Nodal ETSSP G3” for third-generation nodal terminals.

Home Satellite (string): This attribute contains the dotted hierarchical name of the home

satellite node in the scenario for this satellite terminal. It should have the initial value

“Unspecified,” and active attributes should prevent direct user modification.

Modulation Downlink (string),

Modulation Uplink (string)

These attributes define the modulation used for all channels of this satellite terminal in

the uplink and downlink directions. The user should not have the ability to directly

modify them in the Scenario Builder editor. Instead, only the Satellite Link Deployment

Wizard should assign these attributes values. Active attribute definitions should prevent

the user from modifying them directly.

4.13.5 Node Model Specific Configuration

4.13.5.1 General

Each node model that represents a particular generation and nodal or non-nodal implementation

requires some attribute characterization. This subsection describes that for each type of terminal.

Each TSSP node model additionally has two compound attributes that must be uniquely

configured for each type of TSSP satellite terminal: Channel Config and Circuit Configuration.

Channel Config has the attributes that characterize a channel, and Circuit Configuration has the

attributes that define TSSP circuit configurations. The TSSP circuits discussed are using the

Generic Circuit API described in section 3.14.1.

Make these modifications in OPNET Modeler’s or ODK’s Node Model editor. The default

attributes’ symbol maps must have the value “Unset.” Scenario Builder’s Satellite Link

Deployment Wizard expects to find these attributes set to the symbol map value “Unset”

initially. It also expects these attributes to have the correct number of rows. Each row

corresponds to the index of an aggregate side radio channel or an input side wired port.

Refer to the Figure 4-44 below for an example of how to configure these attributes of a nodal

TSSP satellite terminal.

Example Configuration: TSSP Nodal Terminals

Channel Config | Downlink (compound)

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-69

Figure 4-44: Example Configuration—TSSP Nodal Terminals – Channel Config – Downlink Example

The downlink attribute should have exactly six rows. Each row corresponds to a deMUX Group.

2

3

5

4

1

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-70

Circuit Configuration (compound)

Figure 4-45: Example—Circuit Configuration – Source ports

This should have exactly twelve rows. Each row corresponds to a Source Port.

Table 4-12: Satellite Terminal Settings Table

Configuration Attribute Settings

TSSP Nodal Terminals Channel Config | Downlink (compound)

This should have exactly four rows.

Each row corresponds to a deMUX group.

Group Configuration (compound)

This should have exactly eight rows.

Each row corresponds to an input port group.

2

3

1

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-71

Configuration Attribute Settings

TSSP Non-Nodal Terminals (8
Inputs)

Channel Config | Downlink (compound)

This should have exactly one row.

The row corresponds to the single available deMUX group.

Group Configuration (compound)

This should have exactly eight rows.

Each row corresponds to an input port group.

ETSSP Nodal Terminals Channel Config | Downlink (compound)

This should have exactly six rows.

Each row corresponds to a deMUX group.

Group Configuration (compound)

This should have exactly twelve rows.

Each row corresponds to an input port group.

ETSSP Non-Nodal Terminals w/ 8
Inputs

Channel Config | Downlink (compound)

This should have exactly one row.

The row corresponds to the single available deMUX group.

Group Configuration (compound)

This should have exactly 12 rows.

Each row corresponds to an input port group.

ETSSP 3G Nodal Terminals Channel Config | Downlink (compound)

This should have exactly six rows.

Each row corresponds to a deMUX group.

Group Configuration (compound)

This should have exactly 12 rows.

Each row corresponds to an input port group.

ETSSP 3G Non-Nodal Terminals
w/ 8 Inputs

Channel Config | Downlink (compound)

This should have exactly one row.

The row corresponds to the single available deMUX group.

Group Configuration (compound)

This should have exactly 12 rows.

Each row corresponds to an input port group.

All Non-Nodal Terminals w/ 2
Inputs

Channel Config | Downlink (compound)

This should have exactly one row.

The row corresponds to the single available deMUX group.

Group Configuration (compound)

This should have exactly two rows.

Each row corresponds to an input port group.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-72

4.13.6 TSSP Process

Figure 4-46: TSSP Process Model

Table 4-13: Events of the TSSP Process Model

Current State Event Condition Action
Next
State

Init Simulation
start

None Perform initialization Idle

Idle Self
Interrupt

Interrupt code =
TsspC_Intrpt_SatEf
f

Set rxgroups of terminal
and satellite channels

SatEff

SatEff  None None Idle

Idle Stream
Interrupt

Interrupt stream
from an input port

Place incoming packet in
correct transmission
queue

Queue

Queue  None None Idle

Idle Self
Interrupt

Interrupt code =
TsspC_Intrpt_Send
Frame

Construct frame with
payload of transmission
queues and send

Xmt

Xmt  None None Idle

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-73

Current State Event Condition Action
Next
State

Idle Stream
Interrupt

Interrupt stream
from an radio
(satellite) port

Deconstruct the
incoming frame, extract
payload, and forward it
to appropriate inputs

deMUX

deMUX  None None Idle

Idle Fail
Interrupt

None Flush queues, cancel all
scheduled frame
transmissions

Failed

Failed Recover
Interrupt

None Schedule next frame
transmission

Idle

Failed Stream
Interrupt

None Destroy incoming packet Failed

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-74

4.13.7 Key Code Snippets from TSSP Process

Xmt Enter Execs:

This code snippet shows how the TSSP process constructs its frames in efficiency mode. It

places data from each input port into a slot index reserved for only one input port. In efficiency

mode, each frame slot holds all the data of a TSSP frame with respect to one input port. In

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-75

regular mode, the TSSP frame has many slots of smaller size spread out across the entire frame

for each input.

deMUX Enter Execs:

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-76

This code snippet shows how the TSSP process deconstructs a TSSP frame when running with

the global simulation attribute TSSP Efficiency Mode set to “Enabled.” Notice how particular

parts of the frame apply to different individual landline input ports, also called group members.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-77

4.14 SATELLITE GENERIC EXAMPLE

4.14.1 Overview

This subsection provides an example of how to create a satellite that can support the deployment

of bent-pipe links running through it. Creating a satellite node in JCSS requires following some

basic conventions. Before reading this subsection, be sure to read the subsection “Building

Wireless Interfaces” in Section 3, Building JCSS Models.

The following subsection details what a satellite model must have implemented if it is to

function with Scenario Builder’s functionality, such as its Link Deployment Wizard, and is to

interoperate with other device models of the JCSS Standard Model Library.

4.14.2 Node Model Contents

A satellite device model must have one or more uplink and downlink transponders, each with

some number of channels. Each transponder must connect to its own antenna module. Uplink

transponders (radio receiver modules) should follow the naming convention

uplink_transponder_rx_<n> where <n> is an integer that identifies each uplink

transponder with a unique index. Similarly, the downlink transponders should follow the naming

convention downlink_transponder_tx_<n>. Each transponder’s antenna should follow the

naming convention antenna_tx/rx_<n>.

The satellite model must have its equipment_type attribute set to “Satellite.” It can discover the

possible ground terminals by checking for devices with an equipment_type set to “Satellite

terminal.”

4.14.3 Additional Attributes

At its most fundamental level, b a satellite model must have some basic attributes that define that

model as a satellite node in JCSS. These attributes further characterize how the satellite device

handles the traffic that passes through it.

Channel Config (compound): This compound attribute defines the properties of each

channel on the satellite device. Each row of the compound attribute applies to one

channel.

Transponder (string): Identifies the transponder on which this channel resides; it

should have a locked value via active attributes that the user cannot modify in

Scenario Builder.

Channel (integer): Identifies the index of this channel on the transponder; it should

have a locked value via active attributes that the user cannot modify in Scenario

Builder. Together, the Transponder and Channel attributes provide a unique way to

identify any channel of the satellite.

Frequency (double): Minimum frequency value assigned to this channel (MHz).

Bandwidth (double): Bandwidth value assigned to this channel (kHz).

Data Rate (double): Data rate value assigned to this channel (bps).

Power (double): Transmission power assigned to this channel (W); only applicable to

downlink channels.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-78

Switching Table (compound): This compound attribute defines how the device forwards

traffic received on uplink channels to downlink channels. Each row represents a mapping

of an uplink channel to a downlink channel.

Uplink Transponder (index with symbol map): Identifies the transponder of the

uplink channel to map to some other downlink transponder; it should have a locked

value via active attributes that the user cannot modify in Scenario Builder.

Uplink Chnl Idx (integer): Identifies the channel index of the uplink channel to map to

some other downlink transponder; it should have a locked value via active attributes

that the user cannot modify in Scenario Builder.

���� maps to ���� (string). Serves no purpose beyond visualization.

Downlink Transponder (index with symbol map): Identifies the transponder of the

downlink channel to which the satellite forwards all traffic from the uplink channel

identified by Uplink Transponder and Uplink Chnl Idx.

Downlink Chnl Idx (integer): Identifies the channel index of the downlink channel to

which the satellite forwards all traffic from the uplink channel identified by Uplink

Transponder and Uplink Chnl Idx.

Current Number of Links (integer): This integer value represents the current number of

links deployed through this satellite. This attribute should always have a value of “0”

upon instantiation of this model and an active attribute handler to prevent its direct

modification by a user.

Only Scenario Builder should update this value upon the creation and removal of satellite

links running through the satellite.

Uplink Modulation (compound),

Downlink Modulation (compound)

The satellite process reads these attributes to determine what modulation to use for each

of the uplink and downlink transponders. The satellite switch module maintains these two

attributes as extended attributes defined on the module itself.

Both of these compound attributes have a Transponder Index (integer) and a Modulation

Scheme (string) subattributes. The number of rows in the Uplink Modulation and

Downlink Modulation compound attributes should equal the number of uplink and

downlink transponders, respectively.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-79

Figure 4-47: Uplink and Downlink Tables

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-80

4.14.4 Satellite Switch Process

Figure 4-48: Satellite Switch Process Model

Table 4-14: Events of the Satellite Switch Process Model

Current State
Logical
Event

Condition Action Next State

Init Simulation
start

None Perform initialization. Idle

Idle Stream
Interrupt

None None Switch

Idle Failure
Interrupt

None Flush transmission and receiver
queues

Failed

Idle Self
Interrupt

None None Xmt

Switch N/A None Transmit immediately or

En queue the packet in the service
queue, which depends on the
packet switching rate having
INFINITE for its value

Idle

Xmt Self
Interrupt

None Transmit next packet in transmit
queue

Idle

Failed Recover
Interrupt

None None Idle

Failed Stream
Interrupt

None Destroy incoming packet Failed

Failed Fail
Interrupt

None None Failed

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-81

Key Code Snippets from Satellite Switch Process

Init Enter Execs:

This code from the Init state reads the Switching Table attribute to determine how an uplink

channel maps to a downlink channel. A two-dimensional array defines the switching table in

such a manner that any packet received on any single uplink frequency has a predetermined

downlink frequency on which the satellite transmits it.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-82

Switch Enter Execs:

In the packet arrival state, the process reads the switching table to determine to which downlink

stream to forward the received uplink packet. This snippet shows the process set to an infinite

switching speed, whereby it sends the packet immediately upon receiving it rather than storing it

in a queue and sending it at a specified rate. The infinite switching speed setting defines a more

realistic scenario because bent pipe links typically have circuits running through them, which

means it never needs to store and forward bits; it just sends them without waiting to detect the

trailing edge of a packet. Also, note how the interrupt stream value and the first dimension

indexes of the switching table correspond.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-83

4.15 LINK MODEL EXAMPLE

4.15.1 Overview

This subsection explains the construction of a link model using an example. The example link

considered is a duplex link with two channels, each at 1 Mbps. The link also has an additional

signaling overhead. The delay due to the signaling overhead is specified as a model attribute.

4.15.2 Steps

Step 1: Because this is a duplex link, in the Link Types field, set ptdup as the supported link

type. In a new link editor window, set the link type option ptdup as “yes” and leave the other

options as “no.”

Step 2: In the Attributes field, specify channel count as 2. There are two channels supporting

data rates of 1 Mbps each. Therefore, set the data rate as 2,000,000.

Step 3: On the Link menu, choose Model Attributes. In the New Attribute field, enter “signaling

overhead” and click Add. The type for this attribute is specified as “double.”

Step 4: Save the link model.

4.15.3 Pipeline Stage: txdel

The newly created link has a model attribute called signaling overhead. The signaling overhead

for a packet causes a delay in the packet transmission. To account for this, the transmission delay

pipeline stage must be customized.

Sample code for this customization is provided below (this code is derived from

dpt_txdel.ps.c):

Figure 4-49: Sample Code 3—Adding Signaling Overhead to the Transmission Delay

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-84

Please refer to the pipeline stage dpt_txdel.ps.c in the OPNET\<rel_dir>\models\ std\links folder

for more information. FIN/FOUT/FRET (FIN and FOUT are used in the sample code above) are

macros representing Function-IN, Function-OUT, and Function-RETurn. OPNET recommends

that developers incorporate these macros in their code. This is useful while generating stack

traces and function profiling. Further information on this can be found in the OPNET Online

Documentation � Programmers Reference � Discrete Event Simulation � Introduction �

Kernel Procedure Names.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-85

4.16 UTILITY NODE EXAMPLE

4.16.1 Overview

This subsection explains the construction of a Utility Node using an example. The example

utility model is the Wireless Configuration Utility Node, which is used for the purpose of

specifying failure/ recovery and start/stop times of the broadcast networks and the wireless links.

Only a high-level overview is given below. For further details, consult the JCSS Standard model

called Wireless_Configuration.nd.m and its process model wireless_config.pr.m.

4.16.2 Details

Because Utility Nodes are highly specific, begin with a new node model. Because the object will

be a repository of information, a single processor module is all that is needed. This processor

requires a custom process model that performs the following functions:

• Read in attribute values

• Parse information

• Publish information

Once the node model is created and a processor module added, the node model looks like Figure

4-50 below.

Figure 4-50: Wireless Configuration Utility Node—Node Model

4.16.3 Process Model

The Utility Node reads in attributes, parses them, and then publishes them, making the

information available to other models. The Wireless Configuration utility does all of this using a

single BEGSIM interrupt.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-86

Figure 4-51: Wireless Configuration Object—Process Model

The “end” state is used to ensure errors are not incurred if this device sees an event. The code in

the Enter Executives of the “Start_Stop” state performs all of the actions of this object, as seen in

the following code sample:

Figure 4-52: Wireless Configuration Object—Sample Code

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-87

4.17 CONVERTING A DEVICE MODEL FROM THE OPNET STANDARD MODEL LIBRARY

4.17.1 Overview

The OPNET Standard Model Library contains the node model wlan_server_adv. The following

example demonstrates how to make this model function in OPNET COTS products such that it is

compliant with this guide.

Figure 4-53: Sample Node Model

4.17.2 Details

Step 1. Determine which subsections of Section 3 apply to this device model.

This has the application layer, so it has the characteristics of an end system. It has a radio

transmitter and receiver pair, so it also has the characteristic of wireless interfaces.

Step 2. Add required attributes classification, equipment_type, and availability_status. Use

public attribute definitions for each. Because it is an end-system with the full stack, select

“Computer” f�redibilient_type.

[End-System Compliance]

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-88

Figure 4-54: Selecting “Computer” for equipment_type

Step 3. Give it the functionality of firing TCP and UDP IERs by adding se modules to generate

traffic via TCP and another to generate traffic via UDP (se_tcp and se_udp).

[End-System Compliance]

Figure 4-55: Adding se_tcp and se_udp

Step 4. Promote the radio channel properties on the transmitter and receiver and add the net_id

extended attribute so that the broadcast network object can interface with it.

[Wireless Interface Compliance]

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-89

Figure 4-56: Adding the net_id Extended Attribute

Step 5. Remove the lines of code that set the channel frequency. This now happens via the

broadcast network object.

[Wireless Interface Compliance]

wlan_mac Function Block

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-90

wlan_mac_hcf Function Block

Step 6. Add a line to the net_configs file to have a Wireless Local Area Network (WLAN) entry.

WLAN;Unclassified;11000;2401;”Include”;

5000,3000,2000,1000;wlan_control, wlan_mac;wlan_control,wlan_mac

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-91

4.18 CP MODEL EXAMPLE

4.18.1 Overview

This subsection provides an example on the implementation of a CP compliance model. As

mentioned, JCSS applies analytical techniques to rapidly determine the bandwidth requirements

to support specific traffic profiles and patterns. JCSS will require three basic attributes from the

model to determine the CP layer of a specific device: equipment type, interface class, and

machine type. These attributes occur in specific locations within the model.

4.18.2 CP Implementation

In order to use the CP function in JCSS, model developers do not have to insert or modify any

code within the node model. It is vital, however, to add the three required attributes into the

device model to their associated location. The following subsections will describe the location

by using the PRC radio model in JCSS.

4.18.2.1 Equipment Type Attribute

First, the equipment type attribute is used to define the type of the device, such as radio,

computer, and router. Figure 4-57 shows the location of the attribute and a list of available

types. Model developers should define the equipment_type attribute in the model attributes

windows as show in the Figure 4-57.

Figure 4-57: Equipment type attribute example

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-92

4.18.2.2 Interface Class and Machine Type Attributes

The interface class and machine type attributes are both locating in the self-description section of

the device model as shown in the Figure 4-58.

Figure 4-58: Equipment type attribute example

The interface class is defined within the ports description as shown in the following Figure 4-59.

In this example, the interface class of the PRC device model is IP.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-93

Figure 4-59: Equipment type attribute example

Finally, the Machine type attribute is defined within the core section of the self-description. The

following Figure 4-60 shows the example of the machine type that is assigned to the PRC device

model, and the value is router.

JCSS MODEL DEVELOPMENT GUIDE V4.0

4-94

Figure 4-60: Equipment type attribute example

JCSS MODEL DEVELOPMENT GUIDE V4.0

5-1

5 VERIFICATION AND VALIDATION

Verification and Validation (V&V) is important to the creditability of a model that is being used

to solve a real world problem. Without th�redibilityity, it is extremely difficult to gain buy-in

on simulation results.

The importance of V&V is recognized by the Department of Defense in DoD Directive (DoDD)

5000.59 and DoD Instruction (DoDI) 5000.61. These policies describe Verification, Validation,

and Accreditation (VV&A) from the standpoint of Policy, Roles, Responsibilities, Processes and

Procedures. DoDI 5000.61 established the Defense Modeling Simulation Office (DMSO) as the

“DoD VV&A focal point” and the central source of DoD VV&A information. Most of the

information from DMSO is addressed in it’s VV&A Recommended Practices Guide (RPG),

Build 3.1 dated September 2006. There is also a DoD VV&A Documentation Tool that is being

developed to assist Model Developers. These references can be found at:

• DoDD 5000.59 – DoD Modeling and Simulation (M&S) Management

www.dtic.mil/whs/directives/corres/pdf/500059p.pdf

• DoDI 5000.61 – DoD Modeling and Simulation (M&S) Verification, Validation, and

Accreditation (VV&A) www.dtic.mil/whs/directives/corres/pdf/500061p.pdf

• VV&A Recommended Practices Guide – Build 3.1 / September 2006

http://vva.msco.mil/

The accreditation portion may or may not be significant for the JCSS Model Developer.

According to the DoD Policy, all models should go through V&V, however, not all models need

to be accredited. DoDD 5000.59 discusses two primary instances where accreditation is

required; when the model is going to be reused by an external organization, or results will be

used in the acquisition process. In addition, all DoD Components should have their own set of

policies and procedures that a Model Developer should adhere to in their development process.

The RPG provides guidance on VV&A for general purpose M&S. VV&A is about establishing

the relationship between the problem and the model being used to solve that problem. There are

not any definitive steps that apply to V&V, since V&V needs to be tailored to match the nature

of the problem that is being addressed by the M&S application. Some of the factors involved in

tailoring V&V to a general purpose M&S application are:

• Situations being simulated

• Types of decisions driving the employment of the simulation

• Nature of the simulation

• Level of risk

• Technical or resource limitations

The scope of the following discussion within the Model Development Guide (MDG) will limit

itself to V&V of JCSS-compliant models within the JCSS product environment. The focus is to

provide high level guidance for V&V of the design and functions of a model and for ensuring the

newly developed model will integrate into JCSS. Since accreditation may or may not be

JCSS MODEL DEVELOPMENT GUIDE V4.0

5-2

required, dependent on the specific DoD Component policies, the MDG will not discuss

accreditation any further.

The following sub-sections are grouped into two primary V&V objectives: first is to V&V the

functionality of the models, and second is to V&V the model that can be integrated to JCSS.

5.1 MODEL FUNCTIONAL V&V

This section will focus on introducing the basic V&V steps and references to test and examine

the basic required functionalities and accuracies of the model.

5.1.1 Objectives

The primary objective for V&V on models is to provide credibility and believability to the

results that those models generate, so that the results may be used in solving real world problems.

It is also important to note that the data used to drive the model should be evaluated together

with the model, as the model depends on the data to provide realistic simulation. Data V&V is

well documented in the DMSO RPG.

The definitions for verification and validation are often confused:

Verificati–n - The process of determining that a model implementation and its associated

data accurately represent the develo’er's conceptual description and specifications.

Validati–n - The process of determining the degree to which a model and its associated data

provide an accurate representation of the real world from the perspective of the intended

uses of the model.

Verification seeks to answer the question, “Did I build the thing right?” while validation seeks to

answer the question “Did I build the right thing?” Answering these questions positively with

sufficient explanation will create believability in the results generated or the validity of the

model for those seeking to reuse it.

5.1.2 Steps

The Model Developer should follow the applicable DoD Component’s policies and procedures in

accordance with DoD Directives and Instructions. The RPG has very detailed guidelines

regarding V&V for new models, modification of models (legacy), and federated models by the

different types of user views. The following RPG Problem Solving Process demonstrates the

standpoint that VV&A is an integral part of the M&S development process. The focus in the

MDG will be on the box entitled “Perform V&V Activities appropriate for M&S Category”.

JCSS MODEL DEVELOPMENT GUIDE V4.0

5-3

Figure 5-1: M&S Overall Problem Solving Process

The steps to augment the Model Developer’s DoD Component’s policies and procedures specific

to JCSS Compliance V&V are included in Appendix X: JCSS Model Development Guide

Checklist. The steps that will be discussed in further detail in the next section are:

• Following the JCSS Model Development Guide Checklist

• Static Testing

• Equipment String

• Capacity Planner

An important reference regarding V&V is the “JCSS Communications Model Verification and

Validation Plan.” This document defines the JCSS structured, repeatable process for ensuring

that all communications device models included in JCSS are reasonable representations of the

intended actual systems. This includes constraints on how those modules should be employed.

The document describes several phases, of which the final phase focuses on model integration

into JCSS.

Another document that can be referenced is the DoD VV&A Documentation Tool developed by

Space & Naval Warfare Systems Command (SPAWAR).

JCSS MODEL DEVELOPMENT GUIDE V4.0

5-4

It is a good practice to add a brief validation time stamp and the model development Point of

Contact information in the self-description of the model so that users can contact the model

developers or corresponding individual to resolve any issues.

5.2 JCSS COMPLIANCE V&V

The primary objective of this JCSS MDG is to ensure that newly developed models can be

integrated to JCSS and shared with the JCSS community. The JCSS compliance V&V is

important, therefore, to both the model developers and the model users. This section will

introduce the resources that can be utilized by the developer to perform JCSS compliance V&V.

These resources include the JCSS Model Development Checklist, JCSS Static Testing, JCSS

Equipment String, and Capacity Planner Attributes.

5.2.1 JCSS Model Development Checklist

The JCSS Model Development Guide Checklist is the first tool to ensure that newly developed

models can be integrated to the JCSS standard model library. The Checklist can be found in

Appendix X. The checklist is used to provide a basic development check for the developers to

ensure JCSS compliance; however, the checklist cannot provide full coverage to ensure the

compliance.

The checklist can be used for new development or modification of existing OPNET COTS

models for JCSS Compliance, and covers the following areas:

• General Questions regarding the model goals and attributes

• Traffic-generation mechanisms

• Static Testing

• Equipment Strings

• Capacity Planner

• Model Documentation

• Model interfaces to the JCSS standard palette of devices

• Model node modules and port conventions

• Model modules included for end systems

• Model attributes for radio broadcast and point-to-point operations

• Model custom links

If the user submits a model for development, the developer should leave contact information

inside the self description, such that other organizations may contact them for more information

about the model they have developed.

5.2.2 JCSS Static Testing

The JCSS Static Testing Tool comes with JCSS. Static Testing will perform checks of the

syntax of a model. The Static Testing documentation should be consulted for further detail on its

functionality. Some of the items that will be checked by Static Testing include:

• Minimum Attributes Test

• Check for Tx/Rx naming conventions

JCSS MODEL DEVELOPMENT GUIDE V4.0

5-5

• Check for the presence of required modules

• Check for supported packet formats

• Check for interface capability with other equipment

• Check for handling of failure and recovery

• Check for pipeline stage transmitter attributes

• Check for pipeline stage receiver attributes

If a model fails Static Testing, then those points of failure should raise flags. It is important that

those flags be addressed even though they do not necessarily by themselves indicate that a model

is not JCSS compliant. The important questions to answer are; “Does the Model Developer care

about the raised flag?” and “What are the consequences of the raised flag?” It is possible that

mitigation of a raised flag might have to do with different attributes for different equipment

types.

Refer to the “JCSS Communications Device Model Validation and Verification Plan” for further

information.

5.2.3 JCSS Equipment String

In order to ensure that new models are JCSS-compliant, they should be tested using some basic

equipment strings that are relevant to the model that was developed. JCSS Program

Management Office (DISA GE344) has a “JCSS Equipment Strings document. This living

document contains valid equipment strings that involve JCSS models. This document breaks the

equipment strings down into the following categories:

Transmission Network

Pure Transmission Devices

Prominas

Other Multiplexers

Routers – devices that can go over any of the transmission network devices

Circuit Switched Voice – voice circuits that go over all the transmission network devices

and can flow over IP or ATM network

Layer-1 Encryptors – paired up on either WAN or LAN side, if follows a router, then

decryption must occur before the next router

Tactical Radios – include havequick, jtids, prc and eplrs

Invalid Equipment Strings – illogical and unsupported

Another important reference is the “JCSS Equipment Strings Final Test Plan, OPNET 3.4.4. This

document provides tests for JCSS model feature requirements. Some examples of test

procedures provided are; SATCOM device equipment strings, Terrestrial Radio equipment

strings, Promina to Promina equipment strings, etc.

Most important, developers should determine the equipment strings associated with their models

and develop corresponding testing of the strings with the models in the JCSS standard library.

JCSS MODEL DEVELOPMENT GUIDE V4.0

5-6

5.2.4 Capacity Planner

The JCSS network analytical engine is important for providing network capacity planning

support to the network planner. It has the ability to generate shortest-hop routing, calculations of

link and circuit utilization, and bandwidth requirements for support of specific traffic profiles

and patterns. CP is a JCSS-specific capacity, therefore models developed for OPNET Modeler

and IT-Guru cannot be applied in CP. In order to ensure models are JCSS-compliant with

regards to CP and routing, device attributes and properties should be correctly developed. They

include:

• Equipment Type

• Interface Type

• Interface Class

• Machine Type

• Nodal mode

The static test software is a good tool for verifying that all attributes used by CP are available in

the model for the specific model type under the minimum attributes test in the static test

software.

The developer should test their models in CP to ensure the required model attributes and CP

APIs are implemented into their models. For further information, please see the individual

sections on model development that relate to CP in this document.

5.2.5 DoD/Joint VV&A Documentation Tool (DVDT/JVDT)

DVDT/JVDT is a tool that assists the user in creating and maintaining four major documents

required in the VV&A process:

• Accreditation Plan

• VV&A Plan

• VV&A Report

• Accreditation Report

This tool is not part of OPNET, nor is it part of JCSS, however, it is being presented here as a

reference to assist in MDG Developers task of VV&A.

REFERENCES:

1. DoD Standard Practice: Documentation of Verification, Validation and Accreditation

(VV&A) for Models and Simulations. (MIL-STD-XXX002, Draft of 5 December 2006).

It is headed by this caveat:

NOTE: This draft, dated 5 December 2006, prepared by the Defense Modeling

and Simulation Coordination Office, has not been approved and is subject to

modification. DO NOT USE PRIOR TO APPROVAL (Project MSSM-2005-002)

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-1

APPENDIX A: ACRONYMS

Table A-1: Acronyms

Acronym Definition

ACE Applications Characterization Environment

ACK Acknowledgement

ADT Application Delay Tracking

AODV Ad Hoc on Demand Distance Vector

API Application Programming Interface

ATM Asynchronous Transfer Mode

BER Bit Error Rate

BGP Border Gateway Protocol

C4I Joint Command, Control, Communications, Computers and Intelligence

CJCSM Chairman of the Joint Chiefs of Staff Manual

CM Configuration Management

COI Community of Interest

COTS Commercial Off-the-Shelf

CP Capacity Planner

CPU Central Processing Unit

DAMA Demand-Assigned Multiple Access

DE Deployment Editor

DES Discrete Event Simulation

DHCP Dynamic Host Configuration Protocol

DISA Defense Information Systems Agency

DMSO Defense Modeling Simulation Office

DNVT Digital Non-Secure Voice Terminal

DoD Department of Defense

DoDAF DoD Architecture Framework

DoDD DoD Directive

DoDI DoD Instruction

DSL Digital Subscriber Line

DTG Digital Transmission Group

DVDT DoD VV&A Documentation Tool

ECC Error Correction Calculation

EIGRP Extended Interior Gateway Routing Protocol

EPLRS Enhanced Position Location Reporting System

ETSSP Enhanced TSSP

FAQ Frequently Asked Questions

FCC Federal Communication Commission

FDDI Fiber Distributed Data Interface

FDMA Frequency Division Mutiple Access

FLAN Flow Analysis

FR Frame Relay

FTP File Transfer Protocol

GBS Global Broadcast Service

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-2

Acronym Definition

GOTS Government Off-the-Shelf

GUI Graphical User Interface

HTTP Hypertext Transport Protocol

ICI Interface Control Information

IEEE Institute of Electrical and Electronics Engineers

IER Information Exchange Requirement

IGRP Interior Gateway Routing Protocol

INC Internet Controller

INE Inline Network Encryptor

IP Internet Protocol

ISDN Integrated Services Digital Network

JCSS Joint Communication Simulation System

JTIDS Joint Tactical Information Distribution System

JVDT Joint VV&V Documentation Tool

KP Kernel Process

LAN Local Area Network

LDW Link Deployment Wizard

LOS Line of Site

M&S Modeling and Simulation

MAC Medium Access Control

MANET Mobile Ad Hoc Network

MDG Model Development Guide

MIL-STD Military Standard

MOP Measure of Performance

MPLS Multiprotocol Label Switching

MSE Mobile Subscriber Equipment

NACK Negative Acknowledgment

NCES Net-Centric Enterprise Service

OE Operational Element

OLSR Optimized Link State Routing

OMS OPNET Model Support

OPFAC Operational Facility

Org Organization

OSI Open Systems Interconnect

OSPF Open Shortest Path Forwarding

OT Output Table

OV Output Vector

PPP Point-to-Point Protocol

QAE Quality Assurance Engineer

QoS Quality of Service

RF Radio Frequency

RIP Routing Information Protocol

RP Resource Planner

RPG Recommended Practices Guide

RSVP Resource Reservation Protocol

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-3

Acronym Definition

SATCOM Satellite Communications

SB Scenario Builder

SE System Element

SHF Super High Frequency

SLIP Serial Line Internet Protocol

SME Subject Matter Expert

SMU Switch Multiplexer Unit

SNR Signal-to-Noise Ratio

SOA Service-Oriented Architecture

SPAWAR Space & Naval Warfare Systems Command

STD State Transition Diagram

STEP Standardized Tactical Entry Point

STU-III Secure Telephone Units III

T&E Testing and Evaluation

TCP Transmission Control Protocol

TDMA Time Division Multiple Access

TIREM Terrain Integrated Rough Earth Model

TORA Temporally Oriented Routing Algorithm

TPAL Transport Protocol Adaptation Layer

TSSP Tactical Satellite Signal Processing

UDP User Datagram Protocol

V&V Validation and Verification

VTC Video Teleconferencing

VV&A Verification, Validation, and Accreditation

WAN Wide Area Network

WiFi Wireless Fidelity

WiMAX Worldwide Interoperability for Microwave Access

WLAN Wireless Local Area Network

APPENDIX B: GLOSSARY

Generic organization: This is a hierarchical collection of OPFACs, organizations, and

communications infrastructure. It can be thought of as a template organization that can be

instantiated in a scenario. For example, the study analyst can create a generic organization called

“Platoon” and use this in another organization called “Company” or in a scenario.

Kernel procedure: An OPNET-provided function that supports the development of protocols

and algorithms. All kernel procedures start with op_.

Model directories (mod_dirs): An environment attribute that tells OPNET in which folders to

look for locating files. The mod_dirs attribute is found under Edit->Preferences.

Online documentation: An .html or Adobe Acrobat manual that has information about the

OPNET models, kernel procedures, modeling concepts, etc. The manual can be launched from

Modeler by choosing the Online Documentation option under the Help menu.

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-4

Scenario: This is a collection of organizations and communications infrastructure. The

organizations in a scenario have trajectories and positions assigned to them. After a scenario has

been created, the study analyst can run simulations on it.

Scenario Builder: A tool used by the study analyst to deploy organizations in a scenario and run

simulations. Some of the capabilities are creating libraries of OPFACs and organizations,

importing from these libraries, and defining IERs.

Simulation domain: This consists of the Simulation Engine and the models.

Simulation Engine: There are two simulation engines in JCSS: Capacity Planner and DES.

APPENDIX C: ENUMERATED VALUES

The enumerated data types in Table C-1 are provided in JCSS as public attribute definitions. This

provides a mechanism for sharing any changes (additions) to enumerated values that are used as

attributes.

Table C-1: Attributes for Enumerated Data Types

Attribute Values

equipment_type

Computer

Radio

Phone

JTIDS

Switch, Router

Satellite

LOS radio

Promina

Satellite terminal

OE

CellXpress

Encryptor

Multiplexer

Patch Panel

Layer 1Radio

Layer 1 Satellite

Accelerator

Generic Device

VTC Terminal (IER only)

Media Gateway (IER only)

Classification

Unclassified
Classified
Confidential
Secret

Top Secret

Edit … (for user defined – Nopde only)

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-5

Traffic Type (IER only)

Data

Voice

VTC

Protocol (IER only)

TCP

UDP

N/A (used for Voice and VTC IERs)

Priority (IER only)

ROUTINE

PRIORITY

IMMEDIATE

FLASH

FLASH OVERRIDE

APPENDIX D: PACKET FORMATS

Table D-1 lists the packet formats used by the JCSS Standard models. These packet formats may

be required for interoperability with the JCSS Standard models and protocols.

Appendix E: Interfaces and Packet Formats contains a list of MAC technologies currently

supported by OPNET Modeler and the corresponding packet formats. Use Appendix E to

supplement the information found here in Appendix D.

Table D-1: Packet Formats

Packet Format Description

abort_sim JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\misc\hla

absolute_move JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\misc\hla

ale_word_data JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\radio\falcon

ale_word_lqa JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\radio\falcon

ale_word_std JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\radio\falcon

ckswpkt JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\circuit_switch_voice

data JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\nwstd

dummy_multiplexer_pk JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\circuits\promina

dummy_voice_pk JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\circuit_switch_voice

eplrs_eot_packet JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\radio\eplrs

eplrs_hello JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\radio\eplrs

eplrs_mac JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\radio\eplrs

eplrs_mcast_ip JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\radio\eplrs

eplrs_packet_0 JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\radio\eplrs

eplrs_packet_1 JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\radio\eplrs

eplrs_packet_2 JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\radio\eplrs

eplrs_packet_3 JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\radio\eplrs

eplrs_packet_4 JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\radio\eplrs

eplrs_packet_5 JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\radio\eplrs

eplrs_packet_6 JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\radio\eplrs

eplrs_packet_7 JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\radio\eplrs

eplrs_pdu JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\radio\eplrs

eplrs_routing_pk JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\radio\eplrs

eplrs_xmt_unit JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\radio\eplrs

gen_sim_info JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\misc\hla

ier_description JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\misc\hla

IER_Fire JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\misc\hla

ier_info JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\misc\hla

ip_dgram_v4 JCSS\Sim_Domain\op_models\Jcss_std_models\modified_opnet_std_models\ip

JREAP_application_free_text_encoded JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\radio\link16

JREAP_application_free_text_uncoded JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\radio\link16

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-6

JREAP_application_header JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\radio\link16

JREAP_application_J_series JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\radio\link16

JREAP_full_stack_message_group JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\radio\link16

JREAP_full_stack_transmission_block JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\radio\link16

JREAP_mgmt_message JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\radio\link16

JTIDS_packed_frame JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\radio\link16

jtids_pk JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\radio\jtids

KG194_19 JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\crypto

KG84_7 JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\crypto

layer_1_circuit_data JCSS\Sim_Domain\op_models\Jcss_std_models\contributed_models\navy_spawar_models

Link_16_free_text_message JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\radio\link16

Link_16_J_series_message JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\radio\link16

link_info JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\misc\hla

link11_data JCSS\Sim_Domain\op_models\Jcss_std_models\contributed_models\navy_spawar_models

MIL_STD_1553_packet JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\radio\link16

mop_data JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\misc\hla

mop_info JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\misc\hla

move_opfac_by JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\misc\hla

move_opfac_by_bearing JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\misc\hla

move_opfac_to JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\misc\hla

mse_data_packet JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\circuit_switch_voice

mse_hello_packet JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\circuit_switch_voice

new_ier_description JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\misc\hla

NIMA JCSS\Sim_Domain\op_models\Jcss_std_models\contributed_models\navy_spawar_models

nw_ip_voice_hello JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\nwstd

nw_rtp_pkt JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\nwstd

opfac_damage JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\misc\hla

opfac_init JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\misc\hla

opfac_repair JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\misc\hla

phone_switch JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\circuit_switch_voice

positional_move JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\misc\hla

prc_data_packet JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\radio\prc

pro_cx_pk JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\circuits\promina

pro_hello_pk JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\circuits\promina

pro_wan_pk JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\circuits\promina

radio_packet JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\radio\prc

satellite_pk JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\satellite\tssp

SRAP_application JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\satellite\dama

SRAP_application_v2 JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\satellite\dama

tdm_data_pkt JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\circuits\circuit_emulation_devices

tdm_hello_pkt JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\circuits\circuit_emulation_devices

tdm_setup_pkt JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\circuits\circuit_emulation_devices

trigger_ier JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\misc\hla

trigger_new_ier JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\misc\hla

tssp_frame JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\satellite\tssp

UHF_SATCOM_Sat_Packet JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\satellite\dama

USMTF JCSS\Sim_Domain\op_models\Jcss_std_models\contributed_models\navy_spawar_models

vector_move JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\misc\hla

voice_packet JCSS\Sim_Domain\op_models\Jcss_std_models\netwars_std_models\radio\prc

APPENDIX E: STANDARD OPNET INTERFACES AND PACKET FORMATS

This section provides a list of MAC technologies currently supported by OPNET Modeler and

the corresponding packet formats (see Table E-1). This is merely a list of OPNET Standard

(COTS) MAC-level packet formats. Users can, and should, use their own packet formats for

implementing other interface technologies.

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-7

Please refer to Appendix D: Packet Formats for more details regarding the Supported Packet

Formats listed below. The following table is not an exhaustive list.

Table E-1: Interfaces and Packet Formats

Interface Technology Supported Packet Formats Link Type

ATM ams_atm_cell

ATM_generic

ATM_OC3

ATM_OC12

ATM_SONET_OC48

ATM_SONET_OC24

ATM_SONET_OC12

ATM_SONET_OC3

ATM_SONET_OC1

Circuit Switch
ckswpkt

phone_switch

wire_ptp

phone_switch

Ethernet ethernet_v2

1000BaseX

100BaseT

10BaseT

FDDI
fddi_mac_fr

fddi_mac_tk
FDDI

Frame Relay

frms_admin_frame

frms_frame_fmt

frms_tpal_setup_frame

FR_link_generic

FR_DS0

FR_E3

FR_E1

FR_T3

FR_T1

Multiplexer

ckswpkt

ip_dgram_v4

KG194_19

KG84_7

layer_1_circuit_data

mse_hello_packet

tssp_frame

wire_ptp

mux_aggregate

T3

T1

PPP_E3

PPP_E1

PPP_SONET_OC12

PPP_SONET_OC3

PPP_SONET_OC1

PPP_DS3

PPP_DS1

PPP_DS0

KG194

KG95-2

KG75

KY57

KG94

KIV19

KG84

KIV7

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-8

Interface Technology Supported Packet Formats Link Type

Promina

ethernet_v2

ams_atm_cell

ckswpkt

ip_dgram_v4

KG194_19

KG84_7

layer_1_circuit_data

mse_hello_packet

tssp_frame

pro_hello_pk

pro_wan_pk

wire_ptp

mux_aggregate

T3

T1

PPP_E3

PPP_E1

PPP_SONET_OC12

PPP_SONET_OC3

PPP_SONET_OC1

PPP_DS3

PPP_DS1

PPP_DS0

ATM_generic

ATM_OC3

ATM_OC12

ATM_SONET_OC48

ATM_SONET_OC24

ATM_SONET_OC12

ATM_SONET_OC3

ATM_SONET_OC1all
1000BaseX

100BaseT

10BaseT

KG194

KG95-2

KG75

KY57

KG94

KIV19

KG84

KIV7

promina_wan_link

SLIP (DSL, ISDN) ip_dgram_v4

wire_ptp

T3

T1

PPP_E3

PPP_E1

PPP_SONET_OC12

PPP_SONET_OC3

PPP_SONET_OC1

PPP_DS3

PPP_DS1

PPP_DS0

Token Ring

tk_llc_fr

tk_mac_fr

tk_mac_tk

TR4

TR16

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-9

Interface Technology Supported Packet Formats Link Type

Wireless LAN wlan_control, wlan_mac N/A

APPENDIX F: INTERFACE CONTROL INFORMATION (ICI) FORMATS

The ICI Format Files work in a similar fashion to the Packet Format Files. In order to examine

the contents of the ICI format you will need to open the *.ic.m files using OPNET Modeler. It is

easy to perform a search on the directory structure for JCSS to locate the ICI Format files.

However, if you open these files up using a text editor like Wordpad or Notepad, you will

quickly discover that they contain binary information that will make it difficult to read.

A better way to look at these files is through OPNET Modeler. Select File and then Open to get

to the Open Dialog box. Set the “Files of type:” field to “ICI Format Files (*.ic.m).” The

example below shows the Open Dialog box for the JCSS folder of “nwstd.”

Select “ier_info.ic.m” file, to display a dialog box with the ICI format Attribute Names, Type,

Default Value, and Description (if any).

Table F-1: Interfaces and Packet Formats

ICI Format Location

bbs_atm_intf JCSS\Sim_Domain\op_models\netwars_std_models\circuits\circuit_emulation_devices

call_established JCSS\Sim_Domain\op_models\netwars_std_models\nwstd

earth_tdm_bgutil JCSS\Sim_Domain\op_models\netwars_std_models\satellite\gbs

eplrs_graph JCSS\Sim_Domain\op_models\netwars_std_models\radio\eplrs

eplrs_hdr JCSS\Sim_Domain\op_models\netwars_std_models\radio\eplrs

eplrs_hdr_graph_update JCSS\Sim_Domain\op_models\netwars_std_models\radio\eplrs

eplrs_pipeline_ici JCSS\Sim_Domain\op_models\netwars_std_models\radio\eplrs

eplrs_ptc_ici JCSS\Sim_Domain\op_models\netwars_std_models\radio\eplrs

epuu_to_eplrs JCSS\Sim_Domain\op_models\netwars_std_models\radio\eplrs

fail_rec JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

from_data_switch JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

fsr_initiate JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

gss_inport_ici JCSS\Sim_Domain\op_models\netwars_std_models\satellite\gbs

gss_packet_ici JCSS\Sim_Domain\op_models\netwars_std_models\satellite\gbs

ier_ack JCSS\Sim_Domain\op_models\netwars_std_models\nwstd

ier_info JCSS\Sim_Domain\op_models\netwars_std_models\nwstd

ier_pkt_info JCSS\Sim_Domain\op_models\netwars_std_models\nwstd

inform_data_switch JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

inform_mux JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

JRE_mgr JCSS\Sim_Domain\op_models\netwars_std_models\radio\link16

link_stat_ici JCSS\Sim_Domain\op_models\netwars_std_models\nwstd

mse_ici JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

nw_gateway_call_end_ici JCSS\Sim_Domain\op_models\netwars_std_models\voip\gateway

NW_HLA_ABSOLUTE JCSS\Sim_Domain\op_models\netwars_std_models\misc\hla

NW_HLA_IER_FIRE JCSS\Sim_Domain\op_models\netwars_std_models\misc\hla

NW_HLA_NEW_IER_FIRE JCSS\Sim_Domain\op_models\netwars_std_models\misc\hla

NW_HLA_POSITIONAL JCSS\Sim_Domain\op_models\netwars_std_models\misc\hla

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-10

NW_HLA_VECTOR JCSS\Sim_Domain\op_models\netwars_std_models\misc\hla

nw_voice_ici JCSS\Sim_Domain\op_models\netwars_std_models\nwstd

nw_voice_mgr JCSS\Sim_Domain\op_models\netwars_std_models\nwstd

pro_perm_bgutil JCSS\Sim_Domain\op_models\netwars_std_models\circuits\promina

release_bandwidth JCSS\Sim_Domain\op_models\netwars_std_models\nwstd

reserve_bandwidth_failure JCSS\Sim_Domain\op_models\netwars_std_models\nwstd

tdm_bgutil JCSS\Sim_Domain\op_models\netwars_std_models\circuits\circuit_emulation_devices

thread_info JCSS\Sim_Domain\op_models\netwars_std_models\nwstd

tpal_req JCSS\Sim_Domain\op_models\modified_opnet_std_models\tpal

tpal_se JCSS\Sim_Domain\op_models\netwars_std_models\nwstd

UHF_SATCOM_DAMA_Info JCSS\Sim_Domain\op_models\netwars_std_models\satellite\dama

UHF_SATCOM_Entity_Config JCSS\Sim_Domain\op_models\netwars_std_models\satellite\dama

UHF_SATCOM_Entity_Registration JCSS\Sim_Domain\op_models\netwars_std_models\satellite\dama

UHF_SATCOM_Hello JCSS\Sim_Domain\op_models\netwars_std_models\satellite\dama

UHF_SATCOM_Terminal_Rev_Info JCSS\Sim_Domain\op_models\netwars_std_models\satellite\dama

UHF_SATCOM_Token_Passing JCSS\Sim_Domain\op_models\netwars_std_models\satellite\dama

APPENDIX G: MODELING FILE FORMATS

The typed file attribute is used to specify file names for intrinsic file types recognized inside the

OPNET environment. Table G-1 lists typed file functions.

Table G-1: Typed File Attribute

File Suffix File Function

.trj trajectory for a mobile node or subnet

.orb orbit for a satellite node

.pr.m process model for a module

.nd.m node model

.nd.d derived node model

.pk.m packet format

.ic.m ICI format

.lk.m link model

.lk.d derived link model

.nt.m
Network model file. The scenarios, organizations, and OPFACs created by
the study analyst using the Scenario Builder GUI are stored on disk as .nt.m
files.

.gdf Generic data file

.ex.obj External object file (created from .ex.c or .ex.cpp)

APPENDIX H: OTHER FILE FORMATS

Table H-1 lists other file formats and functions.

Table H-1: Other File Formats

File Suffix File Function

.ets.c External Tool Support C code file

.ets.cpp External Tool Support CPP code file

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-11

File Suffix File Function

.ex.c ANSI C external code file

.ex.cpp ANSI CPP external code file

.h C/CPP header file

.xsd XML Schema Document

.xml XML data file

APPENDIX I: MEASURES OF PERFORMANCE IN JCSS

Table I-1 lists the measures of performance reported by OE in a JCSS scenario. All MOPs are

reported for the source OE. These statistics are reported in the OV format and can be collected

locally, globally, or both.

Table I-1: MOPs Reported by OE

Statistic Name Method of Calculation Scope

Completion Rate Shows the percentage of completed IERs vs. failed IERs. This
statistic specifies the probability that an IER is completed on the
network.

Local
Global

Connection
Latency (seconds)

This statistic specifies the average amount of time that an IER
requires to initially setup in the network.

Local
Global

End to End Delay
(seconds)

Shows the total end-to-end delay of the IER. This statistic
specifies the average amount of delay for an IER to reach the
destination in the network. This is based off the sent time of the
IER (i.e., when the IER was sent to the device).

Local
Global

Failed Count Specifies the number of IERs that failed during the simulation. Local
Global

Grade of Service This statistic specifies the percentage that an IER was able to be
sent onto the network.

Local
Global

Perished Count Specifies the number of IERs that perished during the simulation.
Perished IERs mean the IER was not received by the time
specified in the IER definition.

Local
Global

Received Count Specifies the number of IERs that completed successfully during
the simulation.

Local
Global

Retry Attempts Specifies the number of retry attempts needed to send the IER on
the network (i.e., it was not blocked). A blocked IER means that
no device was available to accept the particular IER traffic at the
start time and it must be retried at a later time.

Local
Global

Sent Count Specifies the number of IERs sent during the simulation. Local

Global

Speed of Service
(seconds)

This statistic specifies the average amount of delay for an IER to
reach the destination in the network. This is based off the start
time of the IER (i.e., when the IER signaling was started on the
device).

Local

Global

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-12

Table I-2 details the various statistics groups collected for the statistics listed above. The Local

scope means that this statistic is relevant only to the particular OE, whereas the Global scope

means that the simulation (DES) writes this statistic for the complete network as opposed to an

individual network entity.

Table I-2: Statistics Groups

Statistics Groups Scope

Individual IERs Local

Total Data IERs Global

Total Flash IERs Global

Total Flash Override IERs Global

Total Immediate IERs Global

Total Priority IERs Global

Total Routing IERs Global

Total Voice IERs Global

Total VTC IERs Global

Note: These statistics are also written per IER basis, giving a complete analysis for individual

IERs in addition to the groups/categories discussed above.

DES OT Reports

The first type of report is the Discrete Event Simulation OT Reports. These reports are utilized

by many of the JCSS device models but have been expanded to include IER information. The

information seen in these reports would include producer and consumer device names, actual

start and stop times, whether the IER was successful or failed, what the reason for the failure

was, and who failed the IER, among other things.

1. The user needs to enable the IER reporting capabilities. This functionality can be

enabled either globally through the Discrete Event Simulation or per-IER by using the

Edit Attributes dialog box on a specific IER definition.

a. To configure IER reporting globally for DES, navigate to the DES >

Configure/Run Discrete Event Simulation… menu. Set the IER Reports

attribute in the Global attributes tab to Export Reports. By default, this

attribute is set to Do Not Export Reports for simulation efficiency reasons.

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-13

Figure I-1: Enabling IER DES Reporting Capabilities Globally

b. To configure IER reporting per-IER, right click on an IER Traffic Flow object

and select the Edit Attributes menu. Enable the Export Reports checkbox

and select OK to save the changes.

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-14

Figure I-2: Enabling IER DES Reporting Capabilities Per-IER

2. The user must run a Discrete Event Simulation to completion on a particular IER

scenario. This can be accomplished using the DES > Configure/Run Discrete

Event Simulation… menu.

3. Once a simulation is finished, users can either right-click on the scenario and select

View Results or navigate to the DES > Results > View DES Reports menu. This

will launch the Results Browser dialog box which shows the normal DES statistics,

as well as, the additional IER reports. To navigate to the reports, select the DES Run

(1) Tables tab in the Results Browser dialog box. All IER reports will be located

under the IERs section in the treeview for this tab.

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-15

Figure I-3: Viewing the IER Reports

4. Select an IER report inside the treeview. Once the report is selected, a preview will

be shown with a portion of the information found in the report. Click the Show

button to view the entire report. Note that when viewing these reports, hyperlinks and

export capabilities allow the user to easily understand and translate the report

information.

Figure I-4: Selecting an IER Report

There are currently several DES Reports available to the user. The Summary Report

allows the user to see the overall IER information per IER (number of instances fired,

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-16

number of instances received, etc.). The Individual IERs Report allows the user to see

the information per IER on two levels: Details and Instances. The Details section

shows the standard IER information (type, Interarrival, size, producer device, consumer

device, etc.). The Instances section shows each time the IER specified in the Details

section was fired in the scenario (i.e., an IER instance). Included with each instance is

whether the traffic was successful, a setup time, status (failed or successful), and the

reason for failure (if any), among other things.

Also, similar reports are given for Threaded IERs in the scenario.

Application Delay Tracking

Application Delay Tracking (ADT) is a standard OPNET feature that was integrated into

the IER traffic. ADT helps identify the sources of application delay in DES. With ADT,

a user can follow each packet of an application message throughout the simulated

network. For more information, on this feature, refer to the OPNET Standard

documentation. To enable this tracking with IERs, use the following steps:

1. The user needs to enable the ADT reporting capabilities. This functionality can only

be enabled per-IER by using the Edit Attributes dialog box on a specific IER

definition. To configure IER reporting per-IER, right click on an IER Traffic Flow

object and select the Edit Attributes menu. Enable the Application Delay Tracking

checkbox and select OK to save the changes.

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-17

Figure I-5: Enabling Application Delay Tracking Per-IER

2. Next, the user can specify the directory of the output ADT file. To do this, navigate

to the DES > Configure/Run Discrete Event Simulation… menu. Set the

Application Tracking Directory attribute in the Global attributes tab to any valid

Windows directory. By default, this attribute is set to <Primary Model Directory>

which means the file will be output to the first directory set inside your Model

Directories preference (see the Edit > Preferences > Advanced menu).

3. The user must run a Discrete Event Simulation to completion on a particular IER

scenario. This can be accomplished using the DES > Configure/Run Discrete

Event Simulation… menu.

4. Once a simulation is finished, users can navigate to the DES > Results > View

Application Delay Tracking menu for further review of the data. The user will then

specify the location of the ADT file (which will be located in the set directory above)

and will be named according to the following format: <project name>-<scenario

name>.adt. This will launch the Application Segment Tracking Viewer dialog box

which shows the collected ADT information from the simulation.

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-18

Figure I-6: Viewing Application Delay Tracking Files

Device-Level MOPs

The ability to collect device-level MOPs in JCSS allows the model developer and user to collect

any OPNET node-level statistic in a JCSS simulation. Any statistic promoted to the node level

will appear when the user chooses statistics in the Scenario Builder editor. All the networking

and end devices support device-level MOPs.

Device-level MOPs include protocol (ATM, IP, Ethernet, TCP, OSPF, IGMP, EIGRP, BGP)-

specific statistics such as IP.Traffic Sent (packets/sec), IP.Traffic Received (packets/sec),

TCP.Active Connection Count, and OSPF.Traffic Sent (packets/sec) and low-level statistics such

as transmitter throughput and queuing delay. For models that support standard voice and video

applications over circuit switch, the device-level MOPs should include “Application Calls

Generated” and “Application Calls Succeeded” statistics. There are a large number of other

statistics, including the custom statistics that can also be collected.

MOPs for Links

The following MOPs are recorded for links in JCSS:

• Queuing Delay (recorded in both forward and reverse directions separately for wireline links)

• Throughput (recorded in both forward and reverse directions separately for wireline links)

• Utilization (recorded in both forward and reverse directions separately for wireline links)

• Channel Utilization (only for links sending Voice traffic such as Circuit Switch and Promina)

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-19

APPENDIX J: NODE MODEL DOCUMENTATION

A node model, such as end-system devices, networking devices, and OE and Utility Nodes, is

documented by providing the following information in the Comments section of the Node

Interfaces option in the Node Editor. Shown below is a basic template of information that should

be included:

1. Section One – General Information

a. Model Name

b. Communications Device Model Description

c. Interface List

d. Routing and Transport

e. Supported Multi-access schemes

f. Supported multiplexing schemes

g. Configurable attributes

h. Supported traffic

2. Section Two - Failure recovery support

3. Section Three - Developer notes.

a. ICI Formats

b. External Files

c. Header Files

d. Process Models

e. Pipeline Stages

4. Section Four - Model Fidelity

5. Section Five – Military Analyst Nodes

a. Model Usage

b. Exceptions and Elaborations

c. Military Analyst Comments

6. Section Six - Comments

a. Full Edit History

b. External Documentation

c. References and Specifications Used

Below describes some of the above in more detail:

• General Description of the Device

o For an end-system device, the functions and its security classification are

documented in this section.

o For networking equipment, the functions of the networking equipment are

documented in this section.

• Notes to the Military Analyst

o This section includes two- to three-sentence descriptions on the usage of the

device itself. This will also include any special behavior or exceptions that this

device model may have.

• Notes to the Model Developer

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-20

o This section documents the technical details that may be of interest to a model

developer. Technical details to be covered in the specific sections below should

not be reiterated here.

• Last Edit

o Version Number, Date, Author

• Supported Traffic Types

o Specifies the types of traffic the networking equipment handles. The traffic type

can be voice, data, or both.

• Supported Protocols

o The list of protocols supported by this networking device.

• Interface Specification

o Table J-1 contains sample data. The Interface # column specifies the numeric

index of the interface. The Interface Type column specifies the type of interface,

such as Ethernet, ATM, or FR. The Number of Channels column specifies the

number of channels supported by this interface. The Data Rate and Packet

Formats columns list the data rate and packet formats supported by the individual

channels on this interface.

o For every interface, there are as many rows under the Data Rate and Packet

Formats columns as there are number of channels in that interface.

Table J-1: Wired Interface Specifications

Interface

Interface
Type

Number of
Channels

Data Rate (bps) Packet Formats

0 ATM 1 155,520,000 ams_atm_cell

1 ATM 1 155,520,000 ams_atm_cell

o The example networking equipment in Table J-1 has two ATM interfaces, each

with one channel and operating at a data rate of 155.52 Mbps. The interface

supports packets of type ams_atm_cell.

o For radio devices the interfaces are documented differently, as shown in Table

J-2.
Table J-2: Radio Device Interface Specifications

Intf

Modulation
Number

of
Channels

Data
Rate

Packet
Formats

Minimum
Frequency

Bandwidth
Spreading

Code

Power

1,024 wlan_mac,
wlan_control

30 MHz 10 KHz disabled 100W 0 Bpsk 2

2,048 wlan_mac,
wlan_control

30 MHz 10 KHz disabled 100W

o The table specifies sample data for a transmitter. This transmitter has two

channels, one with a data rate of 1Mbps and the other with a data rate of 2 Mbps.

Both channels support packet formats of type wlan_mac and wlan_control. The

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-21

channels have a minimum frequency of 30 MHz with a bandwidth of 10 KHz and

transmitting power of 100 W.

• Process Models

o All the process models that are invoked within the context of this node are

documented in the following format. Table J-3 contains sample data.

Table J-3: Process Models

Name Location Description

trc_170 trc170 This is the line of sight radio transmission device.

o The Name column refers to the name of the process model; the Location column

to the node model within which the process model resides or is invoked. A brief

description of what this process model does is provided in the Description

column.

• External Files Needed

o All external files (header files, C files) needed by the process models in this node

are documented in this section. Table J-4 contains sample data.

Table J-4: External Files Needed

Name of Process Model List of Files Used

ip_dispatch opnet.h, ip_addr_v4.h, ip_auto_address.ex.c

• Handling Failure/Recovery

o This section documents which modules in this node handle failure/recovery

interrupts explicitly and how the interrupts are handled.

• Pipeline Stages Used (Radio/Satellite Only)

o This section documents the transceiver pipeline stages for radio/satellite devices.

This section is not required for wired devices.

• Orbit Specification (Satellite Only)

o This section documents the orbit file used by the satellite device.

• Comments

o This section must be used to document any additional requirements or restrictions

in using this device.

• Full Edit History

o Version Number, Date, Author

• External Documentation

o Author, Date, Title, Optional Comments

APPENDIX K: MODEL NAMING CONVENTIONS

The following is a proposed naming convention to promote clarity and reduce the chances of

naming conflicts. The naming convention for JCSS uses the communications system name as the

base prefix. For example, all MSE models and related files should begin their names mse_. This

name should be unique and distinct from existing JCSS Standard models:

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-22

Node Models: Node models should use a two-part name consisting of the communications

prefix and a device type separated by underscores. If the same base model will be used

for multiple derived device models, a generic function type should replace the device

type.

Derived Node Models: If a generic base model was developed to allow multiple specific

devices to be modeled with the same model, it should be named using the above standard,

that is, prefix followed by device type (replacing the generic function).

Process Models: The process model should be named using the convention of the prefix of

device name or device classification followed by the process function, all separated by

underscores. Some of the process models perform a generic function that is common to

more than one device. These process models can be named starting with a prefix

signifying their technology, followed again by their function. Some of the typical

examples of process model naming are discussed below:

pro_portmap_utility: Here the pro part signifies the category of the device (Promina) and

portmap_utility signifies its function of handling port map configurations.

ams_atm_call_control: Here the ams_atm signifies the ATM technology, whereas the

call_control signifies the ATM call control functions performed by the process

model.

External Files: External files are named with the prefix followed by the device (or function),

if applicable, followed by descriptive name, terminated with the extension .c or .cpp. For

example: JCSS_satellite_support.ex.c

Header Files: Header files are used to declare externally callable functions, shared type

definitions, defines, and simulation-wide global variables. Those header files declaring

functions should use the same file name as the external (C/C++) file but with extension

.h. If the header file does not contain declarations of externally callable functions, it

should be given a name descriptive of the communications system in which it is used,

optionally a function of that communications system and the extension .h. For example:

JCSS_stat_support.h

Link Models: Link models should be named using the protocol and, optionally, the link

speed. For example: wire_ptp

Derived Link Models: Derived link models should be named using the same convention as

link models.

Transmitters and Receivers: The transmitter and the receiver should be named with a

substring “tx_index” and “rx_index” included in the name. The index should start from

an integer value of 0 and be numbered sequentially. Examples of transmitter names

include tx_1, inc_tx_2, and atm_tx_3_0. Receivers could be named as rx_1, inc_rx_2,

atm_tx_3_0, and so on. Note that the name should not include any more tx or rx

substrings. Names that are not acceptable, for example, are mtx_tx_0 and rtx_tx_5.

Externally Callable Functions: Externally callable functions should be named using an

abbreviation for the external file in which it resides followed by a short phrase describing

the function.

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-23

APPENDIX L: JCSS SIMULATION API AND HELPER FUNCTIONS

APIs are External Files, which end in either “.ex.c” for C source code files or “.ex.cpp” for C++

source code files work in a similar fashion to the Packet Format Files. Unlike the files ending in

“.m” (e.g., Packet Formats and ICI Formats), these are text files and can be viewed using a text

editor such as Notepad or Wordpad. The APIs can easily be found by searching the JCSS model

files looking for those files that end in “.ex.c*”, which would include both C and C++ APIs.

The following table lists the External Files along with the features supported by each file.

Table L-1: JCSS APIs and their Locations

Support Area API List Location

BGP Models bgp_support JCSS\Sim_Domain\op_models\modified_opnet_std_models\bgp

Encryptor

Models crypto_support JCSS\Sim_Domain\op_models\netwars_std_models\crypto

EPLRS Model eplrs_support JCSS\Sim_Domain\op_models\netwars_std_models\radio\eplrs

Circuit Switch

Models flood_search_routing JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

gdc_notif_log_support JCSS\Sim_Domain\op_models\modified_opnet_std_models\gdc HAIPE

Models gdc_support JCSS\Sim_Domain\op_models\modified_opnet_std_models\gdc

gna_sup_conn_support JCSS\Sim_Domain\op_models\modified_opnet_std_models\applications Standard

Application

Models gna_sup_lib JCSS\Sim_Domain\op_models\modified_opnet_std_models\applications

IP Auto-

Addressing ip_auto_addr_sup_v4 JCSS\Sim_Domain\op_models\modified_opnet_std_models\ip

IP Modeling ip_rte_support JCSS\Sim_Domain\op_models\modified_opnet_std_models\ip

Wireless

Configuration

Node Support jcss_wireless_config_support JCSS\Sim_Domain\op_models\netwars_std_models\misc\utility

Link16

Modeling Link_16 JCSS\Sim_Domain\op_models\netwars_std_models\radio\link16

Circuit Switch

Voice and

Channelization

Modeling netwars_logical_link_support JCSS\Sim_Domain\op_models\netwars_std_models\nwstd

JCSS Satellite

(TSSP,

Bentpipe)

Models netwars_satellite_support JCSS\Sim_Domain\op_models\netwars_std_models\satellite\gbs

General JCSS

Modeling

Support netwars_support JCSS\Sim_Domain\op_models\netwars_std_models\nwstd

Accelerator

4000 Model nw_accelerator_sup JCSS\Sim_Domain\op_models\netwars_std_models\router

nw_circuit_api JCSS\Sim_Domain\op_models\netwars_std_models\nwstd Generic

Circuit APIs nw_circuit_stat JCSS\Sim_Domain\op_models\netwars_std_models\nwstd

IP Auto-

Addressing nw_custom_ip_auto_addr JCSS\Sim_Domain\op_models\netwars_std_models\misc\cots_support

nw_ier_ot_support JCSS\Sim_Domain\op_models\netwars_std_models\nwstd
IER Modeling

nw_ier_support JCSS\Sim_Domain\op_models\netwars_std_models\nwstd

IP Auto-

Addressing nw_ip_modification_support JCSS\Sim_Domain\op_models\netwars_std_models\misc\cots_support

nw_oms_basetraf_src JCSS\Sim_Domain\op_models\netwars_std_models\nwstd Tracer Packet

APIs nw_tracer_pkt_support JCSS\Sim_Domain\op_models\netwars_std_models\nwstd

VoIP Phone nw_voice_gateway JCSS\Sim_Domain\op_models\netwars_std_models\voip\gateway

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-24

and Gateway

Models nw_voice_mgr JCSS\Sim_Domain\op_models\netwars_std_models\nwstd

Tracer Packet

APIs oms_buffer_bgutil JCSS\Sim_Domain\op_models\modified_opnet_std_models\oms

PEP Model pep_app_support JCSS\Sim_Domain\op_models\netwars_std_models\pep

promina_rte JCSS\Sim_Domain\op_models\netwars_std_models\circuits\promina

promina_support JCSS\Sim_Domain\op_models\netwars_std_models\circuits\promina

promina_support_alt JCSS\Sim_Domain\op_models\netwars_std_models\circuits\promina

promina_topo JCSS\Sim_Domain\op_models\netwars_std_models\circuits\promina

Promina

Models

promina_voice_support JCSS\Sim_Domain\op_models\netwars_std_models\circuits\promina

RTP Models rtp_support JCSS\Sim_Domain\op_models\modified_opnet_std_models\rtp

TCP Models tcp_api JCSS\Sim_Domain\op_models\modified_opnet_std_models\tcp

TIREM

Propagation

Model tirem_support JCSS\Sim_Domain\op_models\netwars_std_models\misc\tirem

tpal_api JCSS\Sim_Domain\op_models\modified_opnet_std_models\tpal TPAL Model

(Interface to

UDP/TCP) tpal_app_support JCSS\Sim_Domain\op_models\modified_opnet_std_models\applications

DES

Debugger

Trace

Messaging

Support trace_support JCSS\Sim_Domain\op_models\netwars_std_models\nwstd

UHF_SATCOM_CPS_Entity JCSS\Sim_Domain\op_models\netwars_std_models\satellite\dama

UHF_SATCOM_CPS_ServicePlan_Parser JCSS\Sim_Domain\op_models\netwars_std_models\satellite\dama

UHF_SATCOM_CPS_TextManipulation JCSS\Sim_Domain\op_models\netwars_std_models\satellite\dama

UHF_SATCOM_Noise_Area JCSS\Sim_Domain\op_models\netwars_std_models\satellite\dama

UHF_SATCOM_Orderwires JCSS\Sim_Domain\op_models\netwars_std_models\satellite\dama

UHF_SATCOM_Platform JCSS\Sim_Domain\op_models\netwars_std_models\satellite\dama

UHF_SATCOM_Platform_Utilization JCSS\Sim_Domain\op_models\netwars_std_models\satellite\dama

UHF DAMA

Models

UHF_SATCOM_Port_Map JCSS\Sim_Domain\op_models\netwars_std_models\satellite\dama

USN Circuit

Modeling USN_ckt_supp JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

APPENDIX M: ATTRIBUTE TYPE DEFINITIONS

This appendix describes the various attribute types used in JCSS. For more information, refer to

OPNET Modeler Online documentation, Modeling Concepts Manual, “Modeling Framework”

chapter, “Fram.3.3, Attributes” section.

Toggle

When a variable takes Boolean values such as On/Off or Included/Not Included, it is defined as a

Toggle variable. An example of a Toggle variable is availability_status of a node, which is “1”

to indicate that it is available for communication or “0” to indicate that it is not available.

Integer

When a variable takes whole-number values, it is defined as an integer variable. An example of

an integer variable is max_active_calls for a phone, which cannot be defined in fractions of the

number of supported calls.

Double

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-25

When a variable needs to represent a precise numerical quantity, it is defined as a double

variable. An example of a double variable is x position of a node, which could take a value such

as “38.324.”

String

When a variable is used to hold a set of characters, it is defined as a string variable. An example

of a string variable is the name attribute of a node.

Enumerated

When a variable takes only a set of pre-defined values, it is represented as an enumerated

variable. The value for an enumerated variable is represented as a string during specification and

as an integer during simulation.

An example of an enumerated value is the classification attribute of a node. This variable takes a

certain number of pre-defined values such as “classified,” “unclassified,” or “secret.” These are

typically loaded as public attribute definition files and can be shared across models, for example,

the classification.ad.m file.

The JCSS Standard enumerated types have been defined as public attributes, and these are

defined in Appendix C.

Compound

When a variable cannot be represented by one of the simple data types described above, it is

represented by a compound data type. A compound data type is a collection of simple data types

and other complex data types. A compound data type can have arbitrary levels of nesting.

An example of a compound variable is the channel attribute of a transmitter module. The

channel attribute is a combination of two simple data types—an integer called data rate and an

enumerated field called packet format.

Typed file

This is a character string that represents the name of a file. A typed file could be a trajectory file

for a mobile node, an orbit file for a satellite node, or any of the other supported file formats. For

a full listing of the supported typed files, refer to Appendix G.

Structure

This is similar to the compound attribute type. While the compound attribute type is used in the

node model attributes, the structure attribute is used in packet format attributes.

Information

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-26

The information attribute type is used in packet fields. These fields cannot contain any actual

value, and they are used only as padding for the packets, so that the packet can have a certain

number of bits.

Objid

An object ID is used to uniquely identify a simulation object. Nodes, modules inside of nodes,

and compound attributes are all examples of simulation objects. The data type Objid is used to

declare these identifiers. This value is not modifiable.

APPENDIX N: EXAMPLES OF JCSS MODELS

This appendix will go through an example of locating a JCSS Model and the information

relevant to the model. Table N-1 provides a list of all the JCSS Models in alphabetic order to use

as a reference in locating a specific model.

The following table is a complete list of the JCSS Models in alphabetical order.

Table N-1: List of JCSS Models (Alphabetic)

JCSS Models Location

Accelerator4000 JCSS\Sim_Domain\op_models\netwars_std_models\router

Alcatel7270_adv JCSS\Sim_Domain\op_models\netwars_std_models\usfk_models

Alcatel7470_adv JCSS\Sim_Domain\op_models\netwars_std_models\router

Alcatel7750SR1_adv JCSS\Sim_Domain\op_models\netwars_std_models\router

Alcatel7750SR12_adv JCSS\Sim_Domain\op_models\netwars_std_models\router

Alcatel7750SR7_adv JCSS\Sim_Domain\op_models\netwars_std_models\router

ale_config JCSS\Sim_Domain\op_models\netwars_std_models\radio\falcon

AN_FCC_100_V JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

AN_URC_131_V_BB_Transmitter JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

AN_URC_131_V_NB_Transmitter JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

AN_URC_131_V_Receiver JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

AN_URC_139_V JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

AN_USC_38_MDR JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

AN_WSC_3_V11 JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

AN_WSC_3_V14 JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

AN_WSC_3_V15 JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

AN_WSC_3_V17 JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

AN_WSC_3_V18 JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

AN_WSC_3_V2 JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

AN_WSC_3_V3 JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

AN_WSC_3_V6 JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

AN_WSC_3_V7 JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

AN_WSC_3_V9 JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

AN_WSC_5_V JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

AN_WSC_6_V2 JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

AN_WSC_6_V4 JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

AN_WSC_6_V5 JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

AN_WSC_6_V7 JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

AN_WSC_6_V9_C JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

AN_WSC_6_V9_X JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

AN_WSC_8_V1 JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

AN_WSC_8_V2 JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

CA_Satellite JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

CB_SS_2200 JCSS\Sim_Domain\op_models\netwars_std_models\router

CB_SS_6000 JCSS\Sim_Domain\op_models\netwars_std_models\router

CB_SS_9000_adv JCSS\Sim_Domain\op_models\netwars_std_models\router

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-27

CellXpress_PVC_Config JCSS\Sim_Domain\op_models\netwars_std_models\circuits\promina

CISCO 2505 JCSS\Sim_Domain\op_models\netwars_std_models\router

CISCO 2507 JCSS\Sim_Domain\op_models\netwars_std_models\router

CISCO 2509 JCSS\Sim_Domain\op_models\netwars_std_models\router

CISCO 2511 JCSS\Sim_Domain\op_models\netwars_std_models\router

CISCO 2512 JCSS\Sim_Domain\op_models\netwars_std_models\router

CISCO 2516 JCSS\Sim_Domain\op_models\netwars_std_models\router

CISCO 2524 JCSS\Sim_Domain\op_models\netwars_std_models\router

CISCO 2621 JCSS\Sim_Domain\op_models\netwars_std_models\router

CISCO 2916 JCSS\Sim_Domain\op_models\netwars_std_models\router

CISCO 2924 JCSS\Sim_Domain\op_models\netwars_std_models\router

CISCO 2950G 24 EI JCSS\Sim_Domain\op_models\netwars_std_models\router

CISCO 2950G 24 EI_adv JCSS\Sim_Domain\op_models\netwars_std_models\router

CISCO 3000 JCSS\Sim_Domain\op_models\netwars_std_models\router

CISCO 3620 JCSS\Sim_Domain\op_models\netwars_std_models\router

CISCO 3640 JCSS\Sim_Domain\op_models\netwars_std_models\router

CISCO 3660 JCSS\Sim_Domain\op_models\netwars_std_models\router

CISCO 3725_adv JCSS\Sim_Domain\op_models\netwars_std_models\router

CISCO 3745 JCSS\Sim_Domain\op_models\netwars_std_models\router

CISCO 3745_adv JCSS\Sim_Domain\op_models\netwars_std_models\router

Cisco 3750_adv JCSS\Sim_Domain\op_models\netwars_std_models\router

CISCO 4006 JCSS\Sim_Domain\op_models\netwars_std_models\router

CISCO 4500-M JCSS\Sim_Domain\op_models\netwars_std_models\router

CISCO 4700-M JCSS\Sim_Domain\op_models\netwars_std_models\router

CISCO 7010 JCSS\Sim_Domain\op_models\netwars_std_models\router

CISCO 7206 JCSS\Sim_Domain\op_models\netwars_std_models\router

CISCO 7507 JCSS\Sim_Domain\op_models\netwars_std_models\router

Cisco_LS_1010 JCSS\Sim_Domain\op_models\netwars_std_models\switches

cisco2514_adv JCSS\Sim_Domain\op_models\netwars_std_models\router

cisco4500_adv JCSS\Sim_Domain\op_models\netwars_std_models\router

cisco7505_adv JCSS\Sim_Domain\op_models\netwars_std_models\router

Cisco7513_adv JCSS\Sim_Domain\op_models\netwars_std_models\router

cs_end_device_base JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

CTP_1012 JCSS\Sim_Domain\op_models\netwars_std_models\circuits\circuit_emulation_devices

CTP_2024 JCSS\Sim_Domain\op_models\netwars_std_models\circuits\circuit_emulation_devices

Definity Prologic JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

dnvt JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

DPA JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

DPM JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

DSCS_III_Satellite JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

DSS-1 JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

DSS-2 JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

DSS-3 JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

DTA JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

EPLRS_ENM JCSS\Sim_Domain\op_models\netwars_std_models\radio\eplrs

EPLRS_RS JCSS\Sim_Domain\op_models\netwars_std_models\radio\eplrs

EPLRS_Simple JCSS\Sim_Domain\op_models\netwars_std_models\radio\eplrs

ethernet_gdc_server_bgp_adv JCSS\Sim_Domain\op_models\modified_opnet_std_models\gdc

ethernet4_slip8_gdc_gtwy_adv JCSS\Sim_Domain\op_models\modified_opnet_std_models\gdc

Falcon_II_ale JCSS\Sim_Domain\op_models\netwars_std_models\radio\falcon

Firewall_2NIC JCSS\Sim_Domain\op_models\netwars_std_models\router

Firewall_3NIC JCSS\Sim_Domain\op_models\netwars_std_models\router

Firewall_4Slot JCSS\Sim_Domain\op_models\netwars_std_models\router

FLBCST JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

FoundryFastIron1500Switch_adv JCSS\Sim_Domain\op_models\netwars_std_models\usfk_models

FoundryFastIron2402Switch_adv JCSS\Sim_Domain\op_models\netwars_std_models\usfk_models

FoundryFastIron400Switch_adv JCSS\Sim_Domain\op_models\netwars_std_models\usfk_models

FoundryFastIron4802Switch_adv JCSS\Sim_Domain\op_models\netwars_std_models\usfk_models

FoundryFastIron800Switch_adv JCSS\Sim_Domain\op_models\netwars_std_models\usfk_models

FoundryFastIron9604Switch_adv JCSS\Sim_Domain\op_models\netwars_std_models\usfk_models

FoundryNetIron1500Router_adv JCSS\Sim_Domain\op_models\netwars_std_models\usfk_models

FoundryNetIron400Router_adv JCSS\Sim_Domain\op_models\netwars_std_models\usfk_models

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-28

FoundryNetIron800Router_adv JCSS\Sim_Domain\op_models\netwars_std_models\usfk_models

Generic ATM Switch JCSS\Sim_Domain\op_models\netwars_std_models\router

Generic Ckt Switch JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

Generic Hub JCSS\Sim_Domain\op_models\netwars_std_models\switches

Generic IDS JCSS\Sim_Domain\op_models\netwars_std_models\data_applications

Generic IP Data Switch_adv JCSS\Sim_Domain\op_models\netwars_std_models\router

Generic Layer 2 Switch_adv JCSS\Sim_Domain\op_models\netwars_std_models\switches

Generic Layer 3 Switch_adv JCSS\Sim_Domain\op_models\netwars_std_models\router

Generic MW LOS JCSS\Sim_Domain\op_models\netwars_std_models\radio\trc170

Generic Router JCSS\Sim_Domain\op_models\netwars_std_models\router

Generic Server JCSS\Sim_Domain\op_models\netwars_std_models\data_applications

Generic Telephone JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

Generic UFO JCSS\Sim_Domain\op_models\netwars_std_models\satellite\tssp

generic_broadcast_satellite JCSS\Sim_Domain\op_models\netwars_std_models\satellite\gbs

Harris_6010_adv JCSS\Sim_Domain\op_models\netwars_std_models\radio\falcon

Harris_Megastar_155 JCSS\Sim_Domain\op_models\netwars_std_models\usfk_models

IDNX-20 JCSS\Sim_Domain\op_models\netwars_std_models\circuits\promina

IDNX-90 JCSS\Sim_Domain\op_models\netwars_std_models\circuits\promina

IER_Firing_Rules_Config JCSS\Sim_Domain\op_models\netwars_std_models\nwstd

ier_loader JCSS\Sim_Domain\op_models\netwars_std_models\nwstd

INMARSAT_B_HSD JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

INMARSAT_B_Satellite JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

IP_ATM_TACLANE JCSS\Sim_Domain\op_models\netwars_std_models\crypto

JRE_Gateway JCSS\Sim_Domain\op_models\netwars_std_models\radio\link16

jtids JCSS\Sim_Domain\op_models\netwars_std_models\radio\jtids

JTIDS_Terminal JCSS\Sim_Domain\op_models\netwars_std_models\radio\link16

KG_194 JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

KG_84 JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

KG-175 ATM JCSS\Sim_Domain\op_models\netwars_std_models\crypto

KG-175 IP JCSS\Sim_Domain\op_models\netwars_std_models\crypto

KG175-E_10 JCSS\Sim_Domain\op_models\netwars_std_models\crypto

KG175-E100 JCSS\Sim_Domain\op_models\netwars_std_models\crypto

KG194_crypto_base JCSS\Sim_Domain\op_models\netwars_std_models\crypto

KG-235 JCSS\Sim_Domain\op_models\netwars_std_models\crypto

KG-250 JCSS\Sim_Domain\op_models\netwars_std_models\crypto

KG84_crypto_base JCSS\Sim_Domain\op_models\netwars_std_models\crypto

KIV7_crypto_base JCSS\Sim_Domain\op_models\netwars_std_models\crypto

KY68 JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

LAN WAN IP network_adv JCSS\Sim_Domain\op_models\netwars_std_models\data_applications

layer_1_crypto_base JCSS\Sim_Domain\op_models\netwars_std_models\crypto

len JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

Link_11 JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

Link_16_Config JCSS\Sim_Domain\op_models\netwars_std_models\radio\link16

Link_16_Host_Processor JCSS\Sim_Domain\op_models\netwars_std_models\radio\link16

Marconi_ASX1000 JCSS\Sim_Domain\op_models\netwars_std_models\router

Marconi_ASX1200 JCSS\Sim_Domain\op_models\netwars_std_models\router

Marconi_ASX200BX JCSS\Sim_Domain\op_models\netwars_std_models\router

Marconi_PH6000_adv JCSS\Sim_Domain\op_models\netwars_std_models\router

Marconi_PH7000_adv JCSS\Sim_Domain\op_models\netwars_std_models\router

Marconi_PH8000_adv JCSS\Sim_Domain\op_models\netwars_std_models\router

Marconi_TNX1100 JCSS\Sim_Domain\op_models\netwars_std_models\router

Media_Gateway JCSS\Sim_Domain\op_models\netwars_std_models\voip\gateway

MilStar_2_Satellite JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

MMT JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

Motorola NES JCSS\Sim_Domain\op_models\netwars_std_models\crypto

MRC-142 JCSS\Sim_Domain\op_models\netwars_std_models\radio\trc170

mux_12inputs JCSS\Sim_Domain\op_models\netwars_std_models\circuits\mux

mux_16inputs JCSS\Sim_Domain\op_models\netwars_std_models\circuits\mux

mux_2inputs JCSS\Sim_Domain\op_models\netwars_std_models\circuits\mux

mux_4inputs JCSS\Sim_Domain\op_models\netwars_std_models\circuits\mux

mux_8inputs JCSS\Sim_Domain\op_models\netwars_std_models\circuits\mux

NAVMACS JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-29

ncs JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

NES JCSS\Sim_Domain\op_models\netwars_std_models\crypto

NIMA JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

nw_eth_switched_lan_adv JCSS\Sim_Domain\op_models\netwars_std_models\data_applications

nw_ethernet_server JCSS\Sim_Domain\op_models\netwars_std_models\data_applications

nw_ethernet_wkstn JCSS\Sim_Domain\op_models\netwars_std_models\data_applications

nw_generic_device JCSS\Sim_Domain\op_models\netwars_std_models\nwstd

nw_hla_interaction JCSS\Sim_Domain\op_models\netwars_std_models\misc\hla

nw_jam_pulsed JCSS\Sim_Domain\op_models\netwars_std_models\radio\jammers

nw_jam_sb JCSS\Sim_Domain\op_models\netwars_std_models\radio\jammers

nw_jam_swept JCSS\Sim_Domain\op_models\netwars_std_models\radio\jammers

nw_mitre_manet_router_no_mcast JCSS\Sim_Domain\op_models\contributed_models\jcas_contributed_models

nw_modeler_support JCSS\Sim_Domain\op_models\netwars_std_models\misc\utility

nw_multihommed_server JCSS\Sim_Domain\op_models\netwars_std_models\data_applications

nw_multihommed_wkstn JCSS\Sim_Domain\op_models\netwars_std_models\data_applications

nw_ppp_server JCSS\Sim_Domain\op_models\netwars_std_models\data_applications

nw_ppp_wkstn JCSS\Sim_Domain\op_models\netwars_std_models\data_applications

Nw_QoS_Attribute_Config JCSS\Sim_Domain\op_models\netwars_std_models\misc\utility

nw_radio_wkstn JCSS\Sim_Domain\op_models\netwars_std_models\data_applications

Nw_Sink JCSS\Sim_Domain\op_models\netwars_std_models\misc\utility

oe JCSS\Sim_Domain\op_models\netwars_std_models\nwstd

Omni Switch 3WX JCSS\Sim_Domain\op_models\netwars_std_models\switches

Omni Switch 5WX JCSS\Sim_Domain\op_models\netwars_std_models\switches

Omni Switch 9WX JCSS\Sim_Domain\op_models\netwars_std_models\switches

Patch_Panel_48 JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

Patch_Panel_96 JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

prc_inc JCSS\Sim_Domain\op_models\netwars_std_models\radio\prc

prc_radio JCSS\Sim_Domain\op_models\netwars_std_models\radio\prc

pro_cell_express_adv JCSS\Sim_Domain\op_models\netwars_std_models\circuits\promina

pro_portmap_utility JCSS\Sim_Domain\op_models\netwars_std_models\circuits\promina

Promina JCSS\Sim_Domain\op_models\netwars_std_models\circuits\promina

Promina_10l_5w_2eth_2sclx_2cx_adv JCSS\Sim_Domain\op_models\netwars_std_models\circuits\promina

Promina-100 JCSS\Sim_Domain\op_models\netwars_std_models\circuits\promina

Promina-200 JCSS\Sim_Domain\op_models\netwars_std_models\circuits\promina

Promina-400 JCSS\Sim_Domain\op_models\netwars_std_models\circuits\promina

Promina400_e180_sl180 JCSS\Sim_Domain\op_models\netwars_std_models\circuits\promina

Promina-800 JCSS\Sim_Domain\op_models\netwars_std_models\circuits\promina

Proteon CNX 500 JCSS\Sim_Domain\op_models\netwars_std_models\router

Proteon CNX 600 JCSS\Sim_Domain\op_models\netwars_std_models\router

REDCOM HDX JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

REDCOM IGX 1 Shelf JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

REDCOM IGX 10 Shelf JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

REDCOM IGX 16 Shelf JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

REDCOM IGX 2 Shelf JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

REDCOM IGX 3 Shelf JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

REDCOM IGX 4 Shelf JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

REDCOM IGX 5 Shelf JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

REDCOM IGX 6 Shelf JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

REDCOM IGX 7 Shelf JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

REDCOM IGX 8 Shelf JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

RedEagle_INE-100 JCSS\Sim_Domain\op_models\netwars_std_models\crypto

sat_term_etssp_nodal JCSS\Sim_Domain\op_models\netwars_std_models\satellite\tssp

sat_term_etssp_non_nodal JCSS\Sim_Domain\op_models\netwars_std_models\satellite\tssp

sat_term_etsspG3_nodal JCSS\Sim_Domain\op_models\netwars_std_models\satellite\tssp

sat_term_etsspG3_non_nodal JCSS\Sim_Domain\op_models\netwars_std_models\satellite\tssp

sat_term_generic_1port JCSS\Sim_Domain\op_models\netwars_std_models\satellite\generic

sat_term_generic_8port JCSS\Sim_Domain\op_models\netwars_std_models\satellite\generic

sat_term_tssp_nodal JCSS\Sim_Domain\op_models\netwars_std_models\satellite\tssp

sat_term_tssp_non_nodal JCSS\Sim_Domain\op_models\netwars_std_models\satellite\tssp

satellite_generic JCSS\Sim_Domain\op_models\netwars_std_models\satellite\generic

SB-3865 1 Stack JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

SB-3865 2 Stack JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-30

SB-3865 3 Stack JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

SCREAM_100 JCSS\Sim_Domain\op_models\netwars_std_models\circuits\circuit_emulation_devices

SCREAM_50 JCSS\Sim_Domain\op_models\netwars_std_models\circuits\circuit_emulation_devices

sen JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

Server_4Slot JCSS\Sim_Domain\op_models\netwars_std_models\data_applications

SHOUTip JCSS\Sim_Domain\op_models\netwars_std_models\voip\gateway

SMU JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

SRC-57 JCSS\Sim_Domain\op_models\netwars_std_models\radio\trc170

STU-III JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

TACINTEL JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

TCDL_Radio JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

tcp_pep_adv JCSS\Sim_Domain\op_models\netwars_std_models\pep

TD1271 JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

Thales_SONET_Datacryptor JCSS\Sim_Domain\op_models\netwars_std_models\usfk_models

Timeplex_CX-1500 JCSS\Sim_Domain\op_models\netwars_std_models\switches

Timeplex_Link_100 JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

Timeplex_Link_2 JCSS\Sim_Domain\op_models\contributed_models\navy_spawar_models

TRC-170 V2 JCSS\Sim_Domain\op_models\netwars_std_models\radio\trc170

TRC-170 V3 JCSS\Sim_Domain\op_models\netwars_std_models\radio\trc170

TRC-170 V5 JCSS\Sim_Domain\op_models\netwars_std_models\radio\trc170

trc-170 JCSS\Sim_Domain\op_models\netwars_std_models\radio\trc170

TRC-173B JCSS\Sim_Domain\op_models\netwars_std_models\radio\trc170

TSC-100A JCSS\Sim_Domain\op_models\netwars_std_models\satellite\tssp

TSC-152 w ETSSP JCSS\Sim_Domain\op_models\netwars_std_models\satellite\tssp

TSC-152 w TSSP JCSS\Sim_Domain\op_models\netwars_std_models\satellite\tssp

TSC-152 wo TSSP JCSS\Sim_Domain\op_models\netwars_std_models\satellite\tssp

TSC-154 JCSS\Sim_Domain\op_models\netwars_std_models\satellite\tssp

TSC-85B JCSS\Sim_Domain\op_models\netwars_std_models\satellite\tssp

TSC-85C w ETSSP JCSS\Sim_Domain\op_models\netwars_std_models\satellite\tssp

TSC-85C JCSS\Sim_Domain\op_models\netwars_std_models\satellite\tssp

TSC-93B JCSS\Sim_Domain\op_models\netwars_std_models\satellite\tssp

TSC-93C w ETSSP JCSS\Sim_Domain\op_models\netwars_std_models\satellite\tssp

TSC-93C JCSS\Sim_Domain\op_models\netwars_std_models\satellite\tssp

tsc-94 JCSS\Sim_Domain\op_models\netwars_std_models\satellite\gbs

TSC-94A JCSS\Sim_Domain\op_models\netwars_std_models\satellite\tssp

TSQ-190 JCSS\Sim_Domain\op_models\netwars_std_models\satellite\tssp

ttc-39 JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

TTC-39A V3 JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

TTC-39A V4 JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

TTC-39D JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

TTC-39E JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

TTC-42 JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

TTC-46 LEN JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

TTC-48 SEN JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

TTC-56 JCSS\Sim_Domain\op_models\netwars_std_models\circuit_switch_voice

UHF_SATCOM_CPS JCSS\Sim_Domain\op_models\netwars_std_models\satellite\dama

UHF_SATCOM_NCS_Platform JCSS\Sim_Domain\op_models\netwars_std_models\satellite\dama

UHF_SATCOM_PSC_Radio JCSS\Sim_Domain\op_models\netwars_std_models\radio\psc

UHF_SATCOM_Satellite_FLTSATCOM JCSS\Sim_Domain\op_models\netwars_std_models\satellite\dama

UHF_SATCOM_Satellite_UFO JCSS\Sim_Domain\op_models\netwars_std_models\satellite\dama

UHF_SATCOM_SRAP JCSS\Sim_Domain\op_models\netwars_std_models\satellite\dama

UHF_SATCOM_Terminal_Platform JCSS\Sim_Domain\op_models\netwars_std_models\satellite\dama

USC-59 w ETSSP JCSS\Sim_Domain\op_models\netwars_std_models\satellite\tssp

USC-59 w TSSP JCSS\Sim_Domain\op_models\netwars_std_models\satellite\tssp

USC-59 wo TSSP JCSS\Sim_Domain\op_models\netwars_std_models\satellite\tssp

USC-60A w ETSSP JCSS\Sim_Domain\op_models\netwars_std_models\satellite\tssp

USC-60A w TSSP JCSS\Sim_Domain\op_models\netwars_std_models\satellite\tssp

USC-60A wo TSSP JCSS\Sim_Domain\op_models\netwars_std_models\satellite\tssp

voice_config JCSS\Sim_Domain\op_models\netwars_std_models\nwstd

VoIP_Phone JCSS\Sim_Domain\op_models\netwars_std_models\voip

voip_phone_mod2_hellos_enabled JCSS\Sim_Domain\op_models\contributed_models\jcas_contributed_models

Wireless_Configuration JCSS\Sim_Domain\op_models\netwars_std_models\misc\utility

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-31

WSC-6 V5 JCSS\Sim_Domain\op_models\netwars_std_models\satellite\tssp

WSC-6 V6 JCSS\Sim_Domain\op_models\netwars_std_models\satellite\tssp

WSC-6 V7 JCSS\Sim_Domain\op_models\netwars_std_models\satellite\tssp

WSC-6 V9 C Band JCSS\Sim_Domain\op_models\netwars_std_models\satellite\tssp

WSC-6 V9 X Band JCSS\Sim_Domain\op_models\netwars_std_models\satellite\tssp

WSC-8 JCSS\Sim_Domain\op_models\netwars_std_models\satellite\tssp

APPENDIX O: JCSS DOCUMENTATION SET

Figure O-1 illustrates a JCSS documentation set.

Figure O-1: JCSS Documentation Set

APPENDIX P: CREATING MODEL REPOSITORIES IN JCSS

The repositories are the shared object files that represent a set of models (model library). Using

the repositories precludes the necessity for dynamic binding of simulation. DES in JCSS

supports dynamic binding of simulations implicitly in the sense that execution of a simulation

can automatically trigger the binding process. The underlying utility that automates this process

is called op_runsim. This utility can be used to execute simulations from a JCSS console on the

host computer just as Scenario Builder launches it from the Configure/Run Discrete Event

Simulation dialog. op_runsim is essentially the starting point for all dynamically bound

simulation programs. It determines which component files a simulation needs; it then uses the

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-32

host computer’s linker to load all the components and bind them together. Finally, it begins

executing the simulation.

To avoid the dynamic binding process of user-defined components during simulation runtime,

use the op_mkso utility to bind the user-defined components (such as process models, pipeline

stages, and external files) into a single larger object called a repository. Then use this repository

during simulation startup. From the linker’s point of view, a repository exists as a shared object

file.

Building a Repository

On the OPNET Console (Start/Program/OPNET Modeler 15.0/OPNET Console), type the

following command:

For building a development repository:

op_mkso -env_db “<drive_letter>\JCSS..\Sim_Domain\op_admin\env_db15.0”

-type repos -m NAME_OF_REPOSITORY -pr_files ALL -ps_files ALL -

ex_files ALL -comp_trace_info TRUE -kernel_type development -c

For building an optimized repository:

op_mkso -env_db “<drive_letter>\JCSS..\Sim_Domain\op_admin\env_db15.0”

-type repos -m NAME_OF_REPOSITORY -pr_files ALL -ps_files ALL -

ex_files ALL -comp_trace_info TRUE -kernel_type optimized –c

Using a Repository

Make sure that repository file NAME_OF_REPOSITORY.i0.sid.so (development) or

NAME_OF_REPOSITORY.i0.sio.so (optimized) is in one of the directories listed in the

mod_dirs preference of your env_db file (located in

“<drive_letter>\JCSS..\Sim_Domain\op_admin” folder)

Put this environment variable in the env_db file (located in

“<drive_letter>\JCSS..\Sim_Domain\op_admin” folder)
repositories : NAME_OF_REPOSITORY

APPENDIX Q: TROUBLESHOOTING JCSS SIMULATION

Refer to the standard online OPNET documentation for troubleshooting a Discrete Event

Simulation.

APPENDIX R: FREQUENTLY ASKED QUESTIONS

Table R-1 outlines the solution to several frequently asked questions (FAQ).

Table R-1: FAQs

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-33

Question/Problem Solution

How should I set the mod_dirs
environment variable for the
various env_db files for custom
model development?

There are two environment database files that the developer needs to be
aware of when doing any development. One env_db file, which is used by
JCSS, is located under the Scenario_Builder\op_admin folder of the
JCSS installation. The other env_db file is the OPNET Modeler env_db
file. This file is located in the op_admin folder of the opnet_user_home,
and these environment settings are used when the OPNET Modeler
software is used. All the new models developed are saved in the primary
mod_dirs (first entry of the mod_dirs environment variable). To use the
custom models in the JCSS environment the user needs to include this
mod_dirs entry in the JCSS env_db files. Please note that if the custom
models are modified JCSS or OPNET Standard models, they must be
placed before the JCSS and OPNET Standard model directories in both
the env_db files.

How do I enable the debug mode
in my simulation? How can I
enable OPNET debugger in my
JCSS simulation?

To enable the OPNET debugger (odb) for JCSS simulation, check the
“Use OPNET Simulation Debugger” checkbox under Execution | OPNET
Debugger in the Configure/Run dialog box before running the simulation.

I want to specify simulation
attributes. Where can I do that?

This can be done in the Configure/Run dialog box before running the
simulation. The simulation attribute can be defined under Inputs| Global
Attributes.

I want to see the routing tables
generated during the simulation.
How can I do that?

Simulation attribute “IP Routing Table Export/Import” under Inputs | Global
Attributes needs to be set in the Configure/Run dialog box. The integer
value 1 is used for this attribute to export the routes; 2 (import) and 0 are
not to be used.

I have the TIREM data files on
my system but still the TIREM is
not enabled. Why?

To enable TIREM in the simulation, please make sure that:
The files are WOTL format data files.
These files are located in the primary mod_dirs.
The “TIREM” checkbox is turned on. This checkbox is available in the

“Advanced Simulation Configuration” dialog box.

All my data IERs are failed or
reported undelivered. What could
be the reason?

There could be many reasons why the data IERs may not go through the
network, including the following:
Routes were not determined: For some reason if the routes were not

determined by the routing protocol either because of configuration
issues or convergence problems the packets get dropped and hence
the IER is not received at the destination.

Circuits were not set up: For Promina or Multiplexers if the circuits are not
set up correctly the traffic (IER) cannot flow.

Large IERs: IERs of very large size can be dropped because of several
reasons (refer to the following question for details).

Other protocol issues: These issues are logged in a simulation log file per
scenario. This file can be accessed via Results-> Simulation Log.

I have large data IERs (greater
than 20 Mb) and none of the
IERs go through? Why?

IERs of very large sizes can be dropped because of various reasons
including the following:
Reassembly timeouts: If the time taken by the complete IER to reach the

destination is more than the reassembly time, the queue is flushed.
Buffer overflows: For IERs of such large sizes the queues at various

interfaces may overflow causing packet drops.
Low processing speeds: If the IP processing speeds are low, the servicing

of the IP datagrams may be slower, causing reassembly timeouts on
the destination host.

Transport layer: If the transport layer protocol is not reliable (e.g., UDP) or
has a limit on the size of the application layer packets it can handle,
this may also be responsible for the drops at the transport layer. In

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-34

Question/Problem Solution

the case of the application layer in JCSS, the size limitation of the
transport layer is handled by segmenting the application layer
packets.

What are Undelivered IERs?
How are they calculated?

The IERs are reported as Undelivered when they do not make it to the
destination before the simulation completes.
Undelivered IERs = IERs Sent – (IERs Received + IERs failed)

I see some of the IERs reported
as Undelivered. Where did they
go?

The IERs are reported as Undelivered when they do not make it to the
destination before the simulation completes. There can variety of reasons
for this including the following:
Lossy networks: The packets are dropped in the network without

intimation to the host.
Transport layer: If the transport layer is not reliable, the packets dropped

in the network are never retransmitted, and the IERs are counted as
undelivered.

Delays: Higher delays in the network may cause the simulation to be
completed before some of the IERs can reach the destination. The
IER stop times can be changed so that the IER has ample time to
reach the destination before the simulation ends.

What are the Perished IERs? These are the IERs that reached the destination after the perishability
time defined in the IER/Demand definition.

I see the IERs to be received at
the destination, but when I look
at the grade of service statistics I
see that it reports a lesser
percentage of IERs received.
Why?

The grade of service is the percentage of IERs sent that were received
within the perishability time limit. If an IER received takes more time than
the perishability value specified for it, it will not be counted for the grade of
service calculation.

APPENDIX S: FUNCTIONAL ENHANCEMENTS FROM EARLIER JCSS VERSIONS

Changes Made from JCSS Version 8.0 to JCSS Version 9.0:

� JCSS v9.0 is based on the latest OPNET CORE 15.0 PL1.

� EPLRS Model Enhancement:

o As a continued effort to improve upon the current JCSS EPLRS model, further

enhancements were made to the EPLRS model including adding Dynamic

Routing for OSPF and Antenna characteristics. Please refer to the EPLRS Model

User Guide for further assistance.

� DoDAF Import/Export:

o The Department of Defense (DoD) Architecture Framework (DoDAF) provides a

standard for description, development, presentation, and integration of systems for

the DoD. DoDAF is a large standard consisting of many products some of which

will be integrated into JCSS in future releases.

o JCSS v9.0 provides supports for DoDAF OV-3 and SV-6 products as they closely

resemble the JCSS Information Exchange Requirements (IERs) workflow. The

interface consists of the ability to take already existing DoDAF OV-3 and SV-6

products and merge them into a JCSS scenario in the form of IERs. The user will

be able to import the products, test the configuration using simulations, modify

the configuration, and export the modified information to a valid OV-3 or SV-6

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-35

product. The advantage of providing this capability allows the user to quickly

fill-in missing information and test the validity of the configuration. In the end,

this allows the user to have more complete DoDAF products which will allow the

military to make better comparisons and decisions. Please refer to the JCSS IER

Model Userguide for additional information.

� IER Model Enhancements:

o A major update was made to the JCSS IERs in v9.0. JCSS now makes use of

demand objects to represent IERs and Threads in Scenario Builder as an

alternative to the custom data structure that was previously used. The new IERs

allows for better visualization, editing and offers several new capabilities

including the use of various distribution attributes.

o With the implementation of IER demands, the user will be able to create IERs by

deploying a demand from the Object Palette or through a GUI interface. All IERs

created by users in previous software releases will be automatically converted to

the new format. For further information please see the IER Model Userguide.

� VNE SERVER Import (VNESI):

o JCSS v9.0 now offers support for VNE server. VNESI is an OPNET COTS

product that allows you to create a network model from information from VNE

Server data. Please note that JCSS imposes an OPFAC and Organization

hierarchy on all devices. Devices must live within an OPFAC in a JCSS

environment. A VNE license is required to operation this capability and Users

must contact OPNET Technologies.

� NetMapper Support:

o JCSS v9.0 offers OPNET CORE NetMapper support. NetMapper provides up-to-

date Microsoft Office Visio network diagrams “on demand.” These diagrams

extend beyond simple topology to feature detailed logical views of the network

including: Layer 2-3, VPNs, OSPF, VLANs, etc.

� Network Layouts:

o OPNET CORE 14.5 and 15.0 introduces several new Network Layout Wizards

that allow users to quickly build network models, setup wireless devices and run

network difference reports. JCSS v9.0 provides support for these wizards and

include support for the following:

Table S-1: JCSS Wizards

Under Menu Wizard Name

Topology Rapid Configuration

Topology Deploy Wireless Network

Topology Open Edge Connectivity Wizard

Topology Clear Trajectory Assignment

Topology Random Mobility

Topology Import STK Orbit

Topology Shared Risk Groups

Scenario View Associated Output Tables

Scenario User-Defined Reports

Scenario Network Difference Report

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-36

Scenario Object/Attribute Difference Report

Scenario Live Object/Attribute Difference

� New Project Wizard:

o JCSS v9.0 has a more streamlined Project Wizard will be simplified to make the

workflow more intuitive, while increasing functionality. Overall, the dialog

boxes will be combined, new import options added, as well as, utilizing the new

OPNET 14.0 mapping capabilities. This New Project Wizard will not affect the

existing Task Assistant.

� Explicit Setting of BER, ECC Threshold and Antenna Pattern in wireless Models:

o Currently in JCSS users can model the bit error rate (BER) for wireless

communication channels which is calculated from the SINR by looking up the

BER curve for the modulation used by the transmitter and receiver pair. This

framework provides an accurate modeling of the parameters which can affect the

reception of the packets. However, in some R&D applications the users demand

more control over the channel properties particularly over the channel BER to

study different protocols and settings. Also, some JCSS users have expressed the

need to use the BER values measured from actual wireless networks in the

simulation model for further studies of their network architectures.

o In support of this activity, this feature introduces a new node model and the

supporting software to allow the JCSS user to modify the BER, ECC Threshold

and Antenna Pattern for individual wireless nodes in a scenario and override the

default settings of corresponding node models. The new model not only provides

the ability to “playback” the previously defined BER and ECC Threshold values

over time, but also it allows the JCSS user to set those values plus possibly the

Antenna Patterns on selected nodes without the need to open and modify the

corresponding node models

Changes Made from JCSS Version 7.0 to JCSS Version 8.0:

� OPNET CORE:

o JCSS 8.0 is based on OPNET CORE 14.5 PL5

� 64-bit Support for the Scenario Builder (Capacity Planner):

o In previous versions of JCSS, the Discrete Event Simulation (DES) was the only

simulation engine which supported 64-bit architectures. Now, the Capacity

Planner and other Scenario Builder features, also support 64-bit machines. This

enhancement will allow the user to run larger scenarios inside Capacity Planner

without memory problems.

o During testing, baseline scenarios were able to successfully achieve 5000-6000

flows during a Capacity Planner simulation with 64-bit support. Note that this

number can vary depending on the type of 64-bit machine running JCSS.

� EPLRS Model Enhancement:

o MSG Needline Support: The MSG needline provides hosts with a few- to-many

communication capability. Messages are transmitted by a select group of Source

RSs (RSs that are allowed to transmit data from their hosts to other RSs on the

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-37

needline) and are carried on the MSG needline, either directly or through relays,

to other RSs on the needline.

o EPLRS IP Multicast Support: The EPLRS model now supports IP Multicasting.

For additional information, please refer to the EPLRS Model Userguide.

o EPLRS GUI: Active handler attributes were added to the EPLRS GUI to make it

more user friendly.

� Equipment List:

o The JCSS equipment list GUI functionality was replaced with the new OPNET

core functionality “Generate Network Inventory Summary”.

� HAIPE Peer Discovery Model: In support of the DISA EWSE task, an enhanced OPNET

Border Gateway Protocol model was developed to support the High Assurance Internet

Protocol Encryptor (HAIPE) Peer Discovery (HPD). Enhancements include:

o BGP Encapsulation SAFI and BGP Tunnel Encapsulation Attribute:

� [Mohapatra-Rosen] Specifies a BGP extended community attribute

attached to BGP UPDATE messages that carry payload prefixes to

indicate encapsulation protocol type

� Defines a new SAFI: Encapsulation SAFI

� Indicates tunnel type: GRE, L2TPv3, or IP in IP

� Function to build SAFI octet / modify existing function

o Additional tunnel types :

� [Berger] Defines support for IPsec tunnels (AH and ESP)

� Defines support for IP-in-IP and MPLS-in-IP protected by IPsec transport

mode

� Tunnel type is encoded in new sub-TLV: ”IPsec Tunnel Authenticator

Sub-TLV”

� Unified GUI for JCSS Circuit Configuration:

o JCSS 7.0 introduced a unified circuit GUI that allowed users to deploy circuits

between various circuit switch models using a single circuit deployment gui. In

JCSS 8.0, the TSSP and MUX models now support circuit deployment via the

same GUI interface.

� IER Database:

o The IER database has been removed from JCSS 8.0. Users can still import IERs

via text files as an alternative.

� License Updates:

o As of JCSS 8.0, to proceed with a Discrete Event Simulation (DES), the user must

have both a valid IT-Guru or Modeler License and a Simulation Runtime License.

� JCSS JNN Scenario:

o The JCSS JNN scenario was enhanced and now supports both Capacity Planner

and Discrete Event Simulation.

APPENDIX T: SELF-DESCRIPTION GUIDELINES

The self-description information for each model varies depending on factors such as the category

to which the model belongs (e.g., a network layer device versus a datalink layer device) and the

technologies it can support. Among the most common information that is looked for is the

information on the ports. The following discussion points out how this information is specified

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-38

for the JCSS models. If the custom models do not support the same packet format information as

the JCSS models, the developer will have to develop self-description information based on the

models developed.

The capacity planning feature uses the self-description information. Refer to the Section 3,

“Compliance for Non-Discrete Event Simulation (Capacity Planning)” subsection for details.

Port and Port Groups

For all the JCSS models, each port category must have a self-description port object. For

example, MRC-142 (JCSS Standard device model) has the following ports:

Point-to-point ports: ptp_pt_0, ptp_pt_1

Radio ports: radio_tx_0, radio_tx_1

Two port objects will be created, ptp_pt_<n> and radio_tx_<n>, with a range from 0 to 1 (see

Figure T-1).

Figure T-1: Self-Description Port Objects

Each port category needs an “interface type” characteristic defined for it. This interface type

defines the technologies that the set of ports support. These technologies are defined based on the

packet formats for each port category. Then, based on this definition, the interface types are

defined for each port category depending on what packet formats they support (see for details).

Table T-1: JCSS Port Types and Supported Packet Formats

Port Type Support Packet Formats Supported Technologies

ckt phone_switch circuit_switched:Voice_LAN

dtg ckswpkt circuit_switched:Voice_WAN

eplrs all packet types eplrs

lan

ckswpkt

ip_dgram_v4

KG194_19

KG84_7

pro_hello_pk

pro_wan_pk

tssp_frame

serial:DS0

serial:DS1

serial:DS3

serial:T1

serial:T3

serial:OC3

serial:OC12

serial:OC36

serial:OC48

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-39

Port Type Support Packet Formats Supported Technologies

serial:OC192

encryptor:KG194_KIV19

encryptor:KG84_KIV7

circuit_switched:Voice_WAN

multiplexer:mux_aggregate

promina:WAN

prc
prc_data_packet

voice_packet
radio_rf:single_channel

sat terminals tssp_frame radio:SatelliteTSSP

satellite all packet types N/A

wan

pro_cx_pk

pro_hello_pk

pro_wan_pk

promina:WAN

promina:CellXpress

APPENDIX U: IP AUTO ADDRESSING IN CUSTOM MODELS

Overview

For some cases, the makeup of a node model may require that the developer write custom code

in a file reserved only for custom models.

Details

Add a node model attribute Custom IP Auto Address ID (integer) to the node model for which

custom IP auto addressing implementation is wanted. The device type must have a unique

attribute with respect to all other implementations that already exist. Examine the file

nw_custom_ip_auto_addr.h for a list of const int declarations that define a unique ID for device

types that already exist. Add a new declaration for the new type to this file and assign that value

to the Custom IP Auto Address ID attribute defined for the custom device. Also refer to the file

nw_ip_modification_support.h for information on how existing JCSS devices are traversed by

auto addressing.

Secondly, add the code needed to support the custom device model. To do this, modify the file

nw_custom_ip_auto_addr.ex.c starting with the function nw_custom_ip_traverse () that

primarily serves to call the correct routine that implements custom IP auto addressing. This

function takes the following parameters:

ipaa_id: The IP auto addressing ID assigned to the node attribute; it will use this to

determine which routine to call to perform the topology walk over custom devices.

local_node_objid: Objid of the node of the current iteration of the IP graphwalk.

local_link_objid: Objid of the link of the current iteration of the IP graphwalk.

neighbor_node_link_objids_lptr: List of ports (identified by node/link Objid pairs) that

have an IP graph connection to the passed port (identified by the passed local node and

link objids). This function must add entries to this list prior to returning.

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-40

An entry needs to be added to the switch statement of nw_custom_ip_traverse () to

call the custom routine, and of course it will need to be added to the custom routine. This can be

considered an entry point of program flow into the custom code.

Example

In this example, a model developer has added custom IP auto addressing code to support a

custom device model called “Custom_Device_C” where custom IP auto addressing code already

exists to support “Custom_Device_A” and “Custom_Device_B”.

Step 1: Add a Custom IP Auto Address ID attribute to the node model.

Figure U-1: Custom IP Auto Address ID Attribute

Step 2: Add a custom IP auto address ID constant and a function prototype for the custom IP

auto addressing function to the nw_custom_ip_auto_addr.h header file.

Step 3: Add an entry to the switch statement of nw_custom_ip_traverse () and add a

custom function to the file nw_custom_ip_auto_addr.ex.c.

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-41

APPENDIX V: REFERENCES

• OPNET Modeler Online Documentation

• ACE Whiteboard Tutorial

• JCSS Interface Control Document

• JCSS User Manual

• JCSS Communications Model Verification and Validation Plan

• JCSS Communications Device Model Validation and Verification Plan

• JCSS Equipment Strings

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-42

• JCSS Equipment Strings Final Test Plan

• DoD Standard Practice: Documentation of Verification, Validation and Accreditation

(VV&A) for Models and Simulations. (MIL-STD-XXX002, Draft of 5 December 2006)

• DoDI 5000.61 – DoD Modeling and Simulation (M&S) Verification, Validation, and

Accreditation (VV&A) http://www.dtic.mil/whs/directives/corres/html/500061.htm

• DoD VV&A Documentation Tool

APPENDIX W: JCSS MODEL DEVELOPMENT GUIDE CHECKLIST

The purpose of the checklist in Table W-1 is to help the developer and program managers

determine levels of effort to develop new JCSS Standard models or integrate existing models to

JCSS.

Table W-1: JCSS Model Development Guide Checklist

JCSS Model Development Guide Checklist

Model Compliance Yes/No Comments

Does the model contain all the JCSS required attributes? Please refer to
the JCSS Model Development Guide to identify the required device
attributes associated with the model.

Does the model work in capacity planner?

Does the model support logical view?

Does the model work in discrete event simulation?

Does the model support IP auto addressing?

Does the model work in the correct OPNET version that corresponds to
the most recent JCSS version?

Does the model support Circuits? If so, does it work with the Generic
Circuit API?

Does the model work with the following traffic-generation mechanisms?

1. Standard Application Models

2. IER

3. Flows

4. ACE or ACE Whiteboard

Was the model evaluated using the Static Testing Tools?

1. Was anything flagged?

2. Were all flags addressed and successfully mitigated?

Was the model evaluated using various equipment strings?

1. Transmission Networks (Pure Transmission Devices, Prominas,
Other Multiplexors)

2. Routers

3. Circuit Switched Voice

4. Layer-1 Encryptors

5. Tactical Radios

Was the model evaluated using Capacity Planner to obtain reasonable
and expected results within specifications?

1. Shortest-hop routing

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-43

JCSS Model Development Guide Checklist

Model Compliance Yes/No Comments

2. Link and circuit utilizations

3. Bandwidth requirements

Does the model contain the following model documentations?

1. Embedded Documentation

2. User Documentation

3. Test Plan

4. Static Testing Results (including parameters used to get the results)

5. Node Self-Description, such as:
Portgroup—Interface Type
Portgroup—Max Port Data Rate (optional)
Coregroup—Machine Type

Does the model interface to appropriate devices in JCSS Standard
Palette? What devices?

1. End System

2. Layer 1 device

3. Layer 2 device

4. Layer 3 device

5. Circuit-switched device

6. Wireless device

Do the model’s node modules use the correct port conventions? These
include:

1. Wired Ports Transmitter Names (end with <technology>_pt_<n>)

2. Wired Ports Receiver Names (end with <technology>_pr_<n>)

3. Wireless Ports Transmitter Names (end with _tx_<n>)

4. Wireless Ports Receiver Names (end with _rx_<n>)

Does the model include the following modules? Applies only for end-
system models:

1. IER Traffic source node contains SE module

2. Traffic sink node contains SE module

3. Traffic source node contains application module

4. Traffic sink node contains application module

Does the model promote and add the following attributes? These are
only for models that support radio broadcast and point-to-point
operations:

1. Are the transmitter and receiver named in a pair?

2. Promote rx and tx (data rate)

3. Promote rx and tx (min frequency)

4. Promote rx and tx (bandwidth)

5. Promote rx and tx (spreading code)

6. Add extended Net ID attribute to tx and rx

7. Promote rx and tx (Net ID)

Does the model work with custom links? If yes, please answer the
following question:

Are the custom links added to the Linktypemap.gdf file and
documentation?

JCSS MODEL DEVELOPMENT GUIDE V4.0

X-44

Filename: JCSS MDG v4.0 - 20090723

Directory: D:\Documents and

Settings\Shery.Salama\Local Settings\Temp\wz89ef

Template: D:\Documents and

Settings\Shery.Salama\Application

Data\Microsoft\Templates\Normal.dot

Title:

Subject:

Author: Smith, Jan D.

Keywords:

Comments:

Creation Date: 7/23/2009 11:17:00 AM

Change Number: 13

Last Saved On: 7/23/2009 12:15:00 PM

Last Saved By: OPNET

Total Editing Time: 30 Minutes

Last Printed On: 9/28/2010 3:37:00 PM

As of Last Complete Printing

 Number of Pages: 263

 Number of Words: 66,274 (approx.)

 Number of Characters: 377,768 (approx.)

