I 4

oo

DISA Mission Partner Conference
Tampa Bay, FL
April 7 - 10, 2012

Motivation

Evolution & Challenges of DRE Systems
Promising Solution: System Execution
Modeling (SEM) Tools

Examples Application of SEM Tools
Concluding Remarks

Large-scale distributed real-time & I:l

embedded (DRE) systems have the
following characteristics:

Stringent quality-of-service (QoS)
requirements that coincide with Low latency
complex functional requirements

e.g., performance, reliability,

Heterogeneity in both operational

environment & technology I:I

Often developed as monolithic,
stove-piped applications, where
small changes have a large
(negative) impact on quality &
performance/predictability

security, fault tolerance, & etc. |

Large-scale distributed real-time &
embedded (DRE) systems have the
following characteristics:

Stringent quality-of-service (QoS)
requirements that coincide with
complex functional requirements

e.g., performance, reliability,
security, fault tolerance, & etc.

Heterogeneity in both operational
environment & technology

Often developed as monolithic,

stove-piped applications, where

small changes have a large
Historically, these characteristics have resulted in elongated software
lifecycles realized at the expense of overrun project deadlines & effort

Manufacturing
control systems

Emergency
response systems

Mission avionics
systems

! X e 2 Shipboard computing

environments

Traffic management
systems

Cyber-Physical Systems. Systems
featuring a tight combination of, and
coordination between, the system’s
computational and physical
elements.

Ultra-large-scale Systems.
Systems of the future that consist
of billions of lines of code and are
globally connected...

« Historically, distributed real-time &
embedded (DRE) systems were built
directly atop OS & protocols

Applications

Domain-Specific Services

Common Services

Infrastructure Middleware

Operating System &
Communication Protocols
Hardware Devices

« Historically, distributed real-time &
L embedded (DRE) systems were built
Appl,tlons directly atop OS & protocols

@ « Traditional methods of development have
been replaced by middleware layers to
reuse architectures & code

Component-based

. * Viewed externally as Service-Oriented
Middleware Y

Architecture (SOA) Middleware or
Component-based Middleware

Operating System &
Communication Protocols
Hardware Devices

Appl"tions

Resource Allocation &
Control Engine (RACE)

Operating System &

Communication Protocols
Hardware Devices

g

« Historically, distributed real-time &
embedded (DRE) systems were built
directly atop OS & protocols

« Traditional methods of development have
been replaced by middleware layers to
reuse architectures & code

* Viewed externally as Service-Oriented
Architecture (SOA) Middleware or
Component-based Middleware

 e.g., Resource Allocation & Control
Engine (RACE)

* RACE leverages standards-based
SOA middleware to manage computing
& communication resources for
shipboard computing environments

Conventional techniques focus on functional
concerns in the development phase of the
software system

| S

(design)

Ll
System Integration (production)

Software Lifecycle Timeline

QoS concerns are not validated
until system integration (i.e.,
late in the software lifecycle)

.']

' >

System Integration (production)

Software Lifecycle Timeline

(design)

QoS concerns are not validated
until system integration (i.e.,
late in the software lifecycle)

[|

| S
Cd

System Integration (production)

(design)
QoS testing is viewed as a “reactive” process instead of a “proactive” process
due to time-to-market pressures

QoS testing/validation
typically begins when a
system is completely
developed

In theory, you already
begin with cost >150x

Boehm, B., Software Engineering Economics, Prentice Hall, New Jersey, 1981.
* Image from http://www.superwebdeveloper.com/2009/11/25/the-incredible-rate-of-
diminishing-returns-of-fixing-software-bugs/

A
c
kel
©
o
D
Q0
<
©
g - Different levels of the application are
9 developed in different phases of the
development lifecycle
* i.e., serialized-phasing
desi . — >
(design) Software Lifecycle Timeline (production
13

A Infrastructure components
under development

c

9o

s

s

E Application components

< waiting to be developed

-

©

>

(]

-l

desi . . . -

(destgn) Software Lifecycle Timeline (production
14

A
. -
/// e - ";/4"
ks p Lo e -
© R L3t LzieT T T
© l‘ L7 ,, .07 ’/:, -
S L7, S<d P
2 ' e P /// B
a ' ' e i 7 -
e 1.7, _» P e
< ! 1.7, i e
N - R 2z =7 .
"'5 W ’/rlj //’ ’,:‘—,j,:—;/,/’ /,’
= DI % -
o PRy N o e Integration testing cannot
-7 Nt L . . .

« Y Neg? v begin until the system is

- ‘L s .

“ L £ entirely developed

~
(design) ; ; ; (productgn
Software Lifecycle Timeline
15

Integration

Level of Abstraction

Surprises

5

(design)

Cd

Software Lifecycle Timeline (production)

Level of Abstraction

Still in development

Complexities

e System infrastructure cannot be
tested adequately until

Ready for testing applications are done

>

(design)

r 4

Software Lifecycle Timeline (production
17

A
/,/ ’/”’
,’/ . - ,f/”

O e X "y

© \ L ,..-~" Complexities

- 1 7’ <4 4

9 ' / R //'/f:f/ e System infrastructure cannot be
Pl Loy rls =" .

< \ Lot o e tested adequately until

b AN 1 s /’aj”’—”’{’ | . .

o MU .-~ applications are done

© PN PP) 7 .

> s B e - e Entire system must be deployed

Q I 27) -7 fi

4 ,;1/ P e & configured properly to meet

&” - L? e 3
PR Pt QoS requirements

(design) >

Software Lifecycle Timeline (production
18

A
Overall performance?
. -
c o I
(@] . -7 APt Pre
= L’ PP -
6 1 /’ ,’/:‘ A) -
@ \ 7 ,2.-~"| Complexities
— 1 . 2~ .
2 ' y R //’/,}f/ e System infrastructure cannot be
PAaRd Lo bl rls =" .
E N i - tested adequately until
1 - 4 P e e . .
o \“«\" ’l/’/,, B .-~ applications are done
Pid - A2 e .
g 7 3 ’;’;:” LA - * Entire system must be deployed
o Y AN 4 e :
2 < ,;5\;4 \NL %5"5' .° & configured properly to meet
&” - Ly? e .
PR P QoS requirements
* Existing evaluation tools do not
support “what if” evaluation
(design)

Cnfhaiara | ifarvecla Timalina (production
It is hard to address these concerns in processes that use serialized phasing

10

A
Meet QoS
requirements? L7 e
/// e e ";/4'
g /// ,,’ ’,”,—’/z -
ke p Lo e e
¢ 7,
= ! L ~--,-" . Key QoS Concerns
[%)) 1 P 7 % .
2 ' LT L7 257 - e Which D&C's meet the QoS
P AT 22 .
“ SN LETT LT L el . requirements?
) N S e o -
T > !(\ .,,’/ = = ‘W:’ -7
P _ - PR L
g Vg 3 ';’;z’/ ,/,,/'/f{' -
-~ A2 - 27 1 -
3 4—’/5’45 e T e
PRt -2 / i
e Y Ney? v
Vig v P4 g
(design) >
Software Lifecycle Timeline (production
20

A
Performance
metrics? I P
,’/ - - 27
c e T Sl
o . Bt -
3 T e T e
@ ' . o
= \ 7 ,'/:,/ Key QoS Concerns
1 . . L7 2
-<CE ' Lt a7 2277 - e Which D&C's meet the QoS
. IR A7 e .
5 Nt a7 requirements?
B NS i .-~ *Whatis the
- S35 e . "
> PP T e e g worse/average/best time for
&-" _GaT N & M .7 .
- P /1/ s L;Z‘ g various workloads?
Vig v Y pigd
=~
(design) . . . (productgn
Software Lifecycle Timeline
21

11

” -z . -
.- .’ -

Key QoS Concerns

e Which D&C'’s meet the QoS
requirements?

e What is the
worse/average/best time for
various workloads?

¢ How much workload can the
system handle until its QoS
requirements are

A
.
System L7
S overload? L7
.; //
8 ! ’/’ . /’,'?
— ! e e e
7 ', Ry
9 ' RSP i
< | N VP4 e
Y \\l| e /’:‘I”—’/”/f’, s
o N RS s Lk .
— - 4 s P M -
I} /”/ =\\I:/::;/ ,’;’I«l/’/ e
= & ,—J;rS;’ g //’/,/’ .7
Q &7 _ a7 N L0 A e
- -4 N 227 -
ZiSPtt 2R P A Sl
Vi v e’ ig
(design) O nfhinimin | ifmmncnala
It is hard to address these concerns in processes that use serialized phasing

>

ion

Tools to express & validate design
rules

Help applications & developers
adhere to system specifications at
design-time

Tools to ensure design rule
conformance

Help properly deploy & configure
applications to enforce design rules
throughout system lifecycle

Tools to conduct “what if” scenarios

Help analyze QoS concerns prior to
completing the entire system, i.e.,
before system integration phase

Validate
Design
Conformance

Conduct
“What If’
Analysis

23

12

Tools to express & validate design
rules

Help applications & developers
adhere to system specifications at
design-time

Tools to ensure design rule
conformance

Help properly deploy & configure
applications to enforce design rules
throughout system lifecycle

Tools to conduct “what if” scenarios

Help analyze QoS concerns prior to /
completing the entire system, i.e.,

before system integration phase

SEM tools should be applied continuously when developing software elements

Emulab — network testbed/cloud
for testing, debugging, evaluating I o
networked systems

Allows testers to create network
topologies with production
characteristics

e.g., capacity, drop rates, traffic

shaping

www.emulab.org
PlanetLab - open-platform for
constructing experiments that
evaluate planetary-wide services

www.planet-lab.org

13

®

Source Code

Model

@ Behavior/Workload

@

Legend

System developer
—> Janual process

This process is repeated throughout the entire software lifecycle

p

CUTS Emulation Model (or Real Software Components)

CUTS Testing & Runtime Architecture

Emulab Network Testbed/Cloud

Allows developers & testers to gain early insight on a
networked system’s QoS properties in a “production”
environment

Appl"tions

Component-based
Middleware

Operating System &
Communication Protocols
Hardware Devices

NN

generated by CUTS (i.e., real
component structures with
emulated behavior, such as CPU
workload, database workload, disk
workload)

> The target architecture of the DRE
system (e.g., TAO, OpenSplice,
RTI-DDS, & etc.)

} The emulation source code

The emulation network testbed,
i.e., Emulab

15

sensor-l\ /e'rror recovery effector-1
R

(main) (main)
: /planner-l planner-z\- :
sensor-2 configuration effector-2
[
L= D&C & Performance Requirements

« Critical path deadline is 350 ms
* main sensor to main effector
through configuration
« Components in the critical paths cannot
be collocated
* Main sensor & effector must be
deployed on separate hosts

* Three hosts

* One database is shared between
all hosts

SLICE Test Results

Passed

* Only 4 of 11
deployments met the
350 ms critical path
deadline for average
case response time

* Test 11 is the only test
to meet critical path
deadline for worst
case response time

http://www.cs.iupui.edu/~hillj/PDF/CUTS-RTCSA06.pdf

16

SLICE Test Results

Passed

* Test 4 deployed 6 of 8
components on same
host

* Test 5 deployed all the
components on the
same host

* Test 6 deployed critical
path components on the
same host, but violates
deployment constraints

http://www.cs.iupui.edu/~hillj/PDF/CUTS-RTCSA06.pdf

The Resource Allocation & Control Engine (RACE) is an infrastructure-level
component-based DRE system that manages application-level assemblies

» RACE supports two types of
application-level deployments

» Static — deployments created
offline where components are
pre-assigned to hosts

« Dynamic — deployments created
online such that components are
assigned at runtime

* e.g., based on operating
conditions
Baseline Scenario Requirement - higher priority application-level
assemblies must have longer lifetime than lower priority ones

* e.g., under low resource availability

17

Evaluation Criteria

Description

Lifetime Improvement | RACE can improve the lifetime of workflows

deployed dynamically by at least 10% vs.
workflows deployed statically

Dynamic
Deployment
System Execution
Trace

Static Deployment
System Execution
Trace

18

Percentage Improvement

In Lifetime using RACE

Target goal for measured
improvement using RACE

Contil 4s Testing of a Single QoS Unit Test
Performed | ¢r a Commit within 30 Minute Time Intervals

Accepted lower bound for
measured improvement

Test Execution
http://www.cs.iupui.edu/~hillj/PDF/CiCUTS.pdf
http://www.cs.iupui.edu/~hillj/PDF/icst-unite.pdf

Percentage Improvement

In Lifetime using RACE

Located error in evaluation equation
proposed in project specification

continuous Testing of a Single QoS Unit Test
ormed after a Commit within 30 Minute Time Intervals

Test Execution
http://www.cs.iupui.edu/~hillj/PDF/CiCUTS.pdf
http://www.cs.iupui.edu/~hillj/PDF/icst-unite.pdf

19

Percentage Improvement
In Lifetime using RACE

Ensured the percentage improvement was
near our target continuously throughout
the software lifecycle of RACE

Cr .aus Testing of a Single QoS Unit Test
Perfor’ _aafter a Commit within 30 Minute Time Intervals

Test Execution

http://www.cs.iupui.edu/~hillj/PDF/CiCUTS.pdf
http://www.cs.iupui.edu/~hillj/PDF/icst-unite.pdf

Raytheon

» Model-Driven Computing for Distributed Real-time Embedded
Systems; 8/31/04 — 8/31/08

¢ Pollux: Enhancing the Real-time QoS of the Global Information
Grid; 2/24/06 — 7/24/08

» System Execution Modeling Technologies for Large-scale Net-
centric Systems; 1/1/2008 — 12/31/2010

* Quality of Service Enabled Dissemination; 12/31/2007 —
9/30/2009

« CADynCE Experimentation Operations (CEO); 8/31/2007 —
12/31/2007

20

@ ¢ Open Modular Embedded Architectures; 8/1/2008 to
(

¢ /.‘\ magination at work 1/31/2009
* NAOMI; 9/1/2007 to 11/30/2009

. « Early Integration and Performance Testing of Heterogeneous
Australian Government Computing Environments; 1/1/2009 — 12/31/2010

el . System Execution Modeling Research;

e pending

Early identification of QoS bottlenecks

QoS requirements have potential to drive
development effort, not customer satisfaction...

Models can be reused in many different
application domains

One-time upfront cost

The more generalized, the more reuse...
Foundation for provisioning future systems
without much upfront cost

“Quick-look” capabilities
Increased QoS testing coverage...

Reduction in the
semantic & knowledge

gap

Platform independence
for rapid prototyping

Infrastructure research &
development

Less knowledge to realize
complex scenarios

Quick-look under
competing technologies

Provides applications to
support testing

Level of Abstraction

As systems grow larger & more
complex:

 the need to ensure QoS
throughout software lifecycle
will continue to increase

* Next-generation SEM tools are
one method for addressing
this need

There are still a LOT of challenges
remaining in order to meet the needs of
early QoS evaluation

The CUTS is available in open-source format at the following location: n

http://cuts.cs.iupui.edu

22

44

23

